Abstract

When examining the literature for flow effects on circular cylinders one can find many studies on infinite cylinders and cantilevered cylinders but minimal data related to cylinders with two free ends (Shepard, T., Law, D., Dahl, J., Reichstadt, R., and Selvamani, A. S., 2022, “Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends,” ASME Paper No. V001T03A031.). The limited data available shows that the cylinder aspect ratio affects the drag and frequency content of flow within the wake however these studies were done at discreet Reynolds numbers. In order to better understand the combined impact of aspect ratio and Reynolds number a series of wind tunnel tests and numerical simulations has been conducted for cylinders with two free ends having aspect ratios of 2–15. Tests were carried out in the subcritical regime with Reynolds numbers ranging 13000–105,000. Tip vortex effects, which vary with aspect ratio, are shown to impact the cylinder surface pressure, drag coefficient, and wake Strouhal numbers though Reynolds number effects are minor for the conditions studied. The results are compared against existing historical data and show the trend of drag coefficient increasing with cylinder aspect ratio (Shepard, T., Law, D., Dahl, J., Reichstadt, R., and Selvamani, A. S., 2022, “Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends,” ASME Paper No. V001T03A031).

References

1.
Shepard
,
T.
,
Law
,
D.
,
Dahl
,
J.
,
Reichstadt
,
R.
, and
Selvamani
,
A. S.
,
2022
, “
Impact of Aspect Ratio on Drag and Flow Structure for Cylinders With Two Free Ends
,”
ASME
Paper No. V001T03A031.10.1115/V001T03A031
2.
Wieselsberger
,
C.
,
1921
, “
Neuere Feststellungen Über Die Gesetze Des Flüssigkeits- Und Luftwiderstandes
,”
Phys. Z.
,
22
, pp.
321
328
.
3.
Wieselsberger
,
C.
,
1922
, “
Weitere Feststellungen Über Die Gesetze Des Flüssigkeits Und Luftwiderstandes
,”
Phys. Z.
,
23
, pp.
219
224
.
4.
Prandtl
,
L.
,
Wieselsberger
,
C.
, and
Betz
,
A.
,
2009
,
Ergebnisse Der Aerodynamischen Versuchsanstalt zu Göttingen
, Vol. 5,
Universitätsverlag Göttingen
, Gottingen, Germany.
5.
Zdravkovich
,
M. M.
,
Brand
,
V. P.
,
Mathew
,
G.
, and
Weston
,
A.
,
1989
, “
Flow Past Short Circular Cylinders With Two Free Ends
,”
J. Fluid Mech.
,
203
, pp.
557
575
.10.1017/S002211208900159X
6.
Potts
,
D. A.
,
Binns
,
J. R.
,
Potts
,
A. E.
, and
Marcollo
,
H.
,
2019
, “
The Effect of Aspect Ratio on the Drag of Bare Cylinders
,” Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,
ASME
Paper No. OMAE2019-96431.10.1115/OMAE2019-96431
7.
2014
,
DNV GL AS
, “
Environmental Conditions and Environmental Loads
,” DNV Technical Paper Recommended Practice DNV-RP-C205.
8.
Xiang
,
G.
, and
Soares
,
C. G.
,
2020
, “
Improved Dynamical Modelling of Freely Falling Underwater Cylinder Based on CFD
,”
Ocean Eng.
,
211
, p.
107538
.10.1016/j.oceaneng.2020.107538
9.
Prosser
,
D.
, and
Smith
,
M.
,
2015
, “
Aerodynamics of Finite Cylinders in Quasi-Steady Flow
,”
AIAA
Paper No. 1931.10.2514/6.2015-1931
10.
Gao
,
W.
,
Nelias
,
D.
,
Liu
,
Z.
, and
Lyu
,
Y.
,
2018
, “
Numerical Investigation of Flow Around One Finite Circular Cylinder With Two Free Ends
,”
Ocean Eng.
,
156
, pp.
373
380
.10.1016/j.oceaneng.2018.03.020
11.
Chang
,
Y. S.
,
Chen
,
Y. J.
,
Qiu
,
Y. H.
,
Chang
,
C. C.
,
Chu
,
C. C.
, and
Lee
,
F. S.
,
2021
, “
Source-Like Patterns of Flow Past a Circular Cylinder of Finite Span at Low Reynolds Numbers
,”
Phys. Fluids
,
33
(
8
), p.
083607
.10.1063/5.0056885
12.
Vakil
,
A.
, and
Green
,
S. I.
,
2009
, “
Drag and Lift Coefficients of Inclined Finite Circular Cylinders at Moderate Reynolds Numbers
,”
Comput. Fluids
,
38
(
9
), pp.
1771
1781
.10.1016/j.compfluid.2009.03.006
13.
Sumner
,
D.
,
Heseltine
,
J. L.
, and
Dansereau
,
O. J. P.
,
2004
, “
Wake Structure of a Finite Circular Cylinder of Small Aspect Ratio
,”
Exp. Fluids
,
37
(
5
), pp.
720
730
.10.1007/s00348-004-0862-7
14.
Okamoto
,
S.
, and
Sunabashiri
,
Y.
,
1992
, “
Vortex Shedding From a Circular Cylinder of Finite Length Placed on a Ground Plate
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
512
521
.10.1115/1.2910062
15.
Okamoto
,
T.
, and
Yagita
,
M.
,
1973
, “
The Experimental Investigation on the Flow Past a Circular Cylinder of Finite Length Placed Normal to the Plane Surface in a Uniform Stream
,”
Bull. JSME
,
16
(
95
), pp.
805
814
.10.1299/jsme1958.16.805
16.
Farivar
,
D.
,
1981
, “
Turbulent Uniform Flow Around Cylinders or Finite Length
,”
AIAA J.
,
19
(
3
), pp.
275
281
.10.2514/3.7771
17.
Faucett
,
A.
,
Harman
,
T.
, and
Ameel
,
T.
,
2014
, “
Computational Determination of the Modified Vortex Shedding Frequency for a Rigid, Truncated, Wall-Mounted Cylinder in Cross Flow
,”
ASME
Paper No. V010T13A048.10.1115/V010T13A048
18.
Azadeh-Ranjbar
,
V.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2018
, “
Vortex-Induced Vibration of Finite-Length Circular Cylinders With Spanwise Free-Ends: Broadening the Lock-in Envelope
,”
Phys. Fluids
,
30
(
10
), p.
105104
.10.1063/1.5042774
19.
Sumner
,
D.
,
2013
, “
Flow Above the Free End of a Surface-Mounted Finite-Height Circular Cylinder: A Review
,”
J. Fluids Struct.
,
43
, pp.
41
63
.10.1016/j.jfluidstructs.2013.08.007
20.
Yang
,
Y.
,
Feng
,
Z.
, and
Zhang
,
M.
,
2022
, “
Onset of Vortex Shedding Around a Short Cylinder
,”
J. Fluid Mech.
,
933
, A7.10.1017/jfm.2021.1034
21.
Pierson
,
J. L.
,
Auguste
,
F.
,
Hammouti
,
A.
, and
Wachs
,
A.
,
2019
, “
Inertial Flow Past a Finite-Length Axisymmetric Cylinder of Aspect Ratio 3: Effect of the Yaw Angle
,”
Phys. Rev. Fluids
,
4
(
4
), p.
044802
.10.1103/PhysRevFluids.4.044802
22.
Inoue
,
O.
, and
Sakuragi
,
A.
,
2008
, “
Vortex Shedding From a Circular Cylinder of Finite Length at Low Reynolds Numbers
,”
Phys. Fluids
,
20
(
3
), p.
033601
.10.1063/1.2844875
23.
Anthoine
,
J.
,
Olivari
,
D.
, and
Portugaels
,
D.
,
2009
, “
Wind-Tunnel Blockage Effect on Drag Coefficient of Circular Cylinders
,” Wind
Struct.: Int. J.
,
12
(
6
), pp.
541
551
.10.12989/was.2009.12.6.541
24.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
25.
Behera
,
S.
, and
Saha
,
A. K.
,
2019
, “
Characteristics of the Flow Past a Wall-Mounted Finite-Length Square Cylinder at Low Reynolds Number With Varying Boundary Layer Thickness
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061204
.10.1115/1.4042751
26.
Hafez
,
A. M.
,
Abd El-Rahman
,
A. I.
,
Khater
,., and
H. A.
,
2022
, “
Curvature-Sensitive Transition Model Application to Flow Around a Smooth Circular Cylinder
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
114501
.10.1115/1.4054861
27.
Younis
,
B. A.
, and
Abrishamchi
,
A.
,
2014
, “
Three-Dimensional Turbulent Vortex Shedding From a Surface-Mounted Square Cylinder: Predictions With Large-Eddy Simulations and URANS
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060907
.10.1115/1.4025254
28.
Tutar
,
M.
,
Celik
,
I.
, and
Yavuz
,
I.
,
2007
, “
Modeling of Effect of Inflow Turbulence Data on Large Eddy Simulation of Circular Cylinder Flows
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
780
790
.10.1115/1.2734225
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
30.
Shepard
,
T. G.
,
Law
,
D.
,
Menon
,
R. K.
,
Ordahl
,
K.
, and
Gutenberg
,
A.
,
2021
, “
Interference Drag and Flow Structure Around Cylinder-Sphere Junction
,”
Ocean Eng.
,
234
, p.
109276
.10.1016/j.oceaneng.2021.109276
You do not currently have access to this content.