Abstract

The goal of this work is to investigate the feasibility of constructing data-driven dynamical system models of roughness-induced secondary flows in thermally stratified turbulent boundary layers. Considering the case of a surface roughness distribution which is homogeneous and heterogeneous in the streamwise and spanwise directions, respectively, we describe the streamwise averaged in-plane motions via a stream function formulation, thereby reducing the number of variables to the streamwise velocity component, an appropriately introduced stream function, and the temperature. Then, from the results of large eddy simulations, we perform a modal decomposition of each variable with the proper orthogonal decomposition and further utilize the temporal dynamics of the modal coefficients to construct a data-driven dynamical system model by applying the sparse identification of nonlinear dynamics (SINDy). We also present a novel approach for enforcing spanwise reflection symmetry within the SINDy framework to incorporate a physical bias.

References

1.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.10.1146/annurev-fluid-010518-040547
2.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
3.
Rowley
,
C. W.
, and
Dawson
,
S. T.
,
2017
, “
Model Reduction for Flow Analysis and Control
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
387
417
.10.1146/annurev-fluid-010816-060042
4.
Quintino
,
A. M.
,
da Rocha
,
D. L. L. N.
,
Fonseca Júnior
,
R.
, and
Rodriguez
,
O. M. H.
,
2021
, “
Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031401
.10.1115/1.4048876
5.
Fukami
,
K.
,
An
,
B.
,
Nohmi
,
M.
,
Obuchi
,
M.
, and
Taira
,
K.
,
2022
, “
Machine-Learning-Based Reconstruction of Turbulent Vortices From Sparse Pressure Sensors in a Pump Sump
,”
ASME J. Fluids Eng.
,
144
(
12
), p.
121501
.10.1115/1.4055178
6.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
7.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. USA
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
8.
Fletcher
,
C. J.
,
1984
,
Computational Galerkin Methods
, 1 ed.,
Springer, Berlin/Heidelberg.
9.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
10.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzyński
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.10.1017/S0022112003006694
11.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
,
1988
, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
192
, pp.
115
173
.10.1017/S0022112088001818
12.
Noack
,
B. R.
,
Morzynski
,
M.
, and
Tadmor
,
G.
,
2011
,
Reduced–Order Modelling for Flow Control
, 1 ed.,
Springer,
Vienna.
13.
Tritton
,
D. J.
,
1988
,
Physical Fluid Dynamics
, 2 ed.,
Clarendon Press
, Oxford, UK.
14.
Yang
,
X. I.
,
Pirozzoli
,
S.
, and
Abkar
,
M.
,
2020
, “
Scaling of Velocity Fluctuations in Statistically Unstable Boundary-Layer Flows
,”
J. Fluid Mech.
,
886
, p. A3.10.1017/jfm.2019.1034
15.
Yang
,
X. I.
,
Chen
,
P. E.
,
Hu
,
R.
, and
Abkar
,
M.
,
2022
, “
Logarithmic-Linear Law of the Streamwise Velocity Variance in Stably Stratified Boundary Layers
,”
Boundary-Layer Meteorol.
,
183
(
2
), pp.
199
213
.10.1007/s10546-021-00683-5
16.
Anderson
,
W.
,
2019
, “
Non-Periodic Phase-Space Trajectories of Roughness– Driven Secondary Flows in High–Reτ Boundary Layers and Channels
,”
J. Fluid Mech.
,
869
, pp.
27
84
.10.1017/jfm.2019.244
17.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, 2 ed.,
Cambridge University Press
, Cambridge, UK.
18.
Brunton
,
S.
, and
Kutz
,
J.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
, 1 ed.,
Cambridge University Press
, Cambridge, UK.
19.
Mirzakhalili
,
E.
, and
Nejat
,
A.
,
2015
, “
High-Order Solution of Viscoelastic Fluids Using the Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031205
.10.1115/1.4028779
20.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. II. Symmetries and Transformations
,”
Q. Appl. Math.
,
45
(
3
), pp.
573
582
.10.1090/qam/910463
21.
Loiseau
,
J.-C.
, and
Brunton
,
S. L.
,
2018
, “
Constrained Sparse Galerkin Regression
,”
J. Fluid Mech.
,
838
, pp.
42
67
.10.1017/jfm.2017.823
22.
Forooghi
,
P.
,
Yang
,
X.
, and
Abkar
,
M.
,
2020
, “
Roughness–Induced Secondary Flows in Stably Stratified Turbulent Boundary Layers
,”
Phys. Fluids
,
32
(
10
), p.
105118
.10.1063/5.0025949
23.
Amarloo
,
A.
,
Forooghi
,
P.
, and
Abkar
,
M.
,
2022
, “
Secondary Flows in Statistically Unstable Turbulent Boundary Layers With Spanwise Heterogeneous Roughness
,”
Theor. App. Mech. Lett.
,
12
(
2
), p.
100317
.10.1016/j.taml.2021.100317
24.
Willingham
,
D.
,
Anderson
,
W.
,
Christensen
,
K. T.
, and
Barros
,
J. M.
,
2014
, “
Turbulent Boundary Layer Flow Over Transverse Aerodynamic Roughness Transitions: Induced Mixing and Flow Characterization
,”
Phys. Fluids
,
26
(
2
), p.
025111
.10.1063/1.4864105
25.
Anderson
,
W.
,
Barros
,
J. M.
,
Christensen
,
K. T.
, and
Awasthi
,
A.
,
2015
, “
Numerical and Experimental Study of Mechanisms Responsible for Turbulent Secondary Flows in Boundary Layer Flows Over Spanwise Heterogeneous Roughness
,”
J. Fluid Mech.
,
768
, pp.
316
347
.10.1017/jfm.2015.91
26.
Yang
,
X. I.
, and
Abkar
,
M.
,
2018
, “
A Hierarchical Random Additive Model for Passive Scalars in Wall-Bounded Flows at High Reynolds Numbers
,”
J. Fluid Mech.
,
842
, pp.
354
380
.10.1017/jfm.2018.139
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1 ed.,
Cambridge University Press, Cambridge, UK
.
28.
Kaptanoglu
,
A. A.
,
Callaham
,
J. L.
,
Aravkin
,
A.
,
Hansen
,
C. J.
, and
Brunton
,
S. L.
,
2021
, “
Promoting Global Stability in Data–Driven Models of Quadratic Nonlinear Dynamics
,”
Phys. Rev. Fluids
,
6
(
9
), p.
094401
.10.1103/PhysRevFluids.6.094401
You do not currently have access to this content.