Abstract

Cavitation inception in tip leakage flows remains a challenging topic in the engineering field, as the effect of tip gap width on inception is unclear. The present study is devoted to an analysis of the effect of gap width on tip leakage cavitation inception by using full-wetted numerical simulations. Numerical results show that the cavitation inception number is strongly related to the dimensionless gap width τ, which is defined as the ratio of tip gap width to the maximum hydrofoil thickness, and the reason behind it is explained by the specific flow structures. The cavitation inception number of suction side (SS) sheet cavitation decreases gradually with the increase of dimensionless gap. The cavitation inception numbers of tip leakage vortex (TLV) and tip separation vortex (TSV) increase first and then decrease with the increase of the gap, reaching the maximum at τ=0.2 and τ=0.3, respectively. The main reason is that in the gap range of 0.20.3, TLV and TSV cores have the highest vorticity and the lowest pressure.

References

1.
Arndt
,
R.
,
Arakeri
,
V.
, and
Higuchi
,
H.
,
1991
, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
,
229
(
-1
), pp.
269
289
.10.1017/S0022112091003026
2.
Arndt
,
R. E.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.10.1146/annurev.fluid.34.082301.114957
3.
Laborde
,
R.
,
Chantrel
,
P.
, and
Mory
,
M.
,
1997
, “
Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
680
685
.10.1115/1.2819298
4.
Arabnejad
,
M. H.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2022
, “
Numerical Assessment of Cavitation Erosion Risk in a Commercial Water-Jet Pump
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051201
.10.1115/1.4052634
5.
Rood
,
E.
,
1991
, “
Mechanisms of Cavitation Inception
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
163
175
.10.1115/1.2909476
6.
Arndt
,
R. E.
, and
Keller
,
A. P.
,
1992
, “
Water Quality Effects on Cavitation Inception in a Trailing Vortex
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
430
438
.10.1115/1.2910049
7.
Arakeri
,
V.
, and
Acosta
,
A.
,
1973
, “
Viscous Effects in the Inception of Cavitation on Axisymmetric Bodies
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
519
527
.10.1115/1.3447065
8.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press, Cambridge, UK
.
9.
Asnaghi
,
A.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2018
, “
Analysis of Tip Vortex Inception Prediction Methods
,”
Ocean Eng.
,
167
, pp.
187
203
.10.1016/j.oceaneng.2018.08.053
10.
Park
,
I.
,
Kim
,
J.
,
Paik
,
B.
, and
Seol
,
H.
,
2021
, “
Numerical Study on Tip Vortex Cavitation Inception on a Foil
,”
Appl. Sci.
,
11
(
16
), p.
7332
.10.3390/app11167332
11.
Boulon
,
O.
,
Callenaere
,
M.
,
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
1999
, “
An Experimental Insight Into the Effect of Confinement on Tip Vortex Cavitation of an Elliptical Hydrofoil
,”
J. Fluid Mech.
,
390
, pp.
1
23
.10.1017/S002211209900525X
12.
Farrell
,
K.
, and
Billet
,
M.
,
1994
, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
551
557
.10.1115/1.2910312
13.
Asnaghi
,
A.
,
Svennberg
,
U.
,
Gustafsson
,
R.
, and
Bensow
,
R. E.
,
2020
, “
Investigations of Tip Vortex Mitigation by Using Roughness
,”
Phys. Fluids
,
32
(
6
), p.
065111
.10.1063/5.0009622
14.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2005
, “
Scaling of Tip Vortex Cavitation Inception Noise With a Bubble Dynamics Model Accounting for Nuclei Size Distribution
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
55
65
.10.1115/1.1852476
15.
Chen
,
L.
,
Zhang
,
L.
,
Peng
,
X.
, and
Shao
,
X.
,
2019
, “
Influence of Water Quality on the Tip Vortex Cavitation Inception
,”
Phys. Fluids
,
31
(
2
), p.
023303
.10.1063/1.5053930
16.
Gopalan
,
S.
,
Katz
,
J.
, and
Liu
,
H. L.
,
2002
, “
Effect of Gap Size on Tip Leakage Cavitation Inception, Associated Noise and Flow Structure
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
994
1004
.10.1115/1.1514496
17.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), pp.
1
13
.
18.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
19.
Bi
,
Z.
,
Shao
,
X.
, and
Zhang
,
L.
,
2021
, “
Numerical Study of Tip Leakage Vortex Around a NACA0009 Hydrofoil
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051203
.10.1115/1.4049671
20.
De Villiers
,
E.
,
2006
, “
The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
, London, UK.
21.
Openfoam,
2022
, “
The Open Source CFD Toolbox
,” Openfoam Foundation, UK, accessed Apr. 7, https://www.openfoam.com
22.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
23.
Khoo
,
M.
,
Venning
,
J.
,
Pearce
,
B.
,
Takahashi
,
K.
,
Mori
,
T.
, and
Brandner
,
P.
,
2020
, “
Natural Nuclei Population Dynamics in Cavitation Tunnels
,”
Exp. Fluids
,
61
(
2
), pp.
1
20
.10.1007/s00348-019-2843-x
24.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
25.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
2003
, “
Scaling Effect on Prediction of Cavitation Inception in a Line Vortex Flow
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
53
60
.10.1115/1.1521956
You do not currently have access to this content.