Abstract

This article presents a computational investigation of the dilute gas–solid flow's loss coefficient and reattachment length in a horizontally placed backward-facing step. The article's primary objective is to study the effect of the interparticle collision and three significant parameters, namely, inlet solid-phase volume fraction (αs=0.002,0.005), particle size (dp = 70 μm and 200 μm), and solid-particle density (ρs = 1500 kg/m3 and 3000 kg/m3). The numerical procedure uses the Eulerian–Eulerian approach in conjunction with the Kinetic theory of Granular flow and the four-way coupling approach. The outcomes show that the loss coefficient and the reattachment length increase as the interparticle collision intensifies with the system. Moreover, these parameters show higher values with small particle sizes and higher solid-phase volume fractions. The reattachment length is higher with less dense solid particles and higher with heavier solid particles.

References

1.
Tsuji
,
Y.
, and
Morikawa
,
Y.
,
1982
, “
LDV Measurements of an Air-Solid Two-Phase Flow in a Horizontal Pipe
,”
J. Fluid Mech.
,
120
, pp.
385
409
.10.1017/S002211208200281X
2.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Shiomi
,
H.
,
1984
, “
LDV Measurements of an Air–Solid Two–Phase Flow in a Vertical Pipe
,”
J. Fluid Mech.
,
139
, pp.
417
434
.10.1017/S0022112084000422
3.
Ariyaratne
,
W. K. H.
,
Ratnayake
,
C.
, and
Melaaen
,
M. C.
,
2018
, “
CFD Modeling of Dilute Phase Pneumatic Conveying in a Horizontal Pipe Using Euler–Euler Approach
,”
Part. Sci. Technol.
,
36
, pp.
1
9
.10.1080/02726351.2018.1435595
4.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Numerical Simulation for Hydodynamics Analysis and Pressure Drop Prediction in Horizontal Gas-Solid Flows
,”
Part. Sci. Technol.
,
32
, pp.
94
103
.10.1080/02726351.2013.829543
5.
Setia
,
G.
,
Mallick
,
S. S.
,
Pan
,
R.
, and
Wypych
,
P. W.
,
2017
, “
An Experimental Investigation Into Modeling Solids Friction for Fluidized Dense-Phase Pneumatic Transport of Powders
,”
Particuology
,
30
, pp.
83
91
.10.1016/j.partic.2016.03.004
6.
Santo
,
N.
,
Portnikov
,
D.
,
Tripathi
,
N. M.
, and
Kalman
,
H.
,
2018
, “
Experimental Study on the Particle Velocity Development Profile and Acceleration Length in Horizontal Dilute Phase Pneumatic Conveying Systems
,”
Powder Technol.
,
339
, pp.
368
376
.10.1016/j.powtec.2018.07.074
7.
Tripathi
,
N. M.
,
Santo
,
N.
,
Kalman
,
H.
, and
Levy
,
A.
,
2018
, “
Experimental Analysis of Particle Velocity and Acceleration in Vertical Dilute Phase Pneumatic Conveying
,”
Powder Technol.
,
330
, pp.
239
251
.10.1016/j.powtec.2018.02.017
8.
Ebrahimi
,
M.
,
Crapper
,
M.
, and
Ooi
,
J. Y.
,
2014
, “
Experimental and Simulation Studies of Dilute Horizontal Pneumatic Conveying
,”
Part. Sci. Technol.
,
32
(
2
), pp.
206
213
.10.1080/02726351.2013.851133
9.
Bansal
,
A.
,
Mallick
,
S. S.
, and
Wypych
,
P. W.
,
2013
, “
Investigating Straight-Pipe Pneumatic Conveying Characteristics for Fluidized Dense-Phase Pneumatic Conveying
,”
Part. Sci. Technol.
,
31
(
4
), pp.
348
356
.10.1080/02726351.2012.732677
10.
Sharma
,
K.
,
Mallick
,
S. S.
, and
Mittal
,
A.
,
2019
, “
An Evaluation of Testing and Modeling Procedure for Solids Friction Factor for Fluidized Dense-Phase Pneumatic Conveying of Fine Powders
,”
Part. Sci. Technol.
,
39
(1), pp.
62
73
.10.1080/02726351.2019.1662527
11.
Zhou
,
L. X.
, and
Zhang
,
X.
,
2004
, “
Simulation of Sudden-Expansion and Swirling Gas-Particle Flows Using a Two-Fluid Particle-Wall Collision Model With Consideration of the Wall Roughness
,”
ActaMech. Sin.
,
20
(
5
), pp.
447
454
.https://link.springer.com/article/10.1007/BF02484266
12.
Benavides
,
A.
, and
van Wachem
,
B.
,
2009
, “
Eulerian-Eulerian Prediction of Dilute Turbulent Gas-Particle Flow in a Backward-Facing Step
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
452
461
.10.1016/j.ijheatfluidflow.2009.02.012
13.
Sommerfeld
,
M.
,
2003
, “
Analysis of Collision Effects for Turbulent Gas-Particle Flow in a Horizontal Channel: Part I—Particle Transport
,”
Int. J. Multiphase Flow
,
29
(
4
), pp.
675
699
.10.1016/S0301-9322(03)00031-4
14.
Hidayat
,
M.
, and
Rasmuson
,
A.
,
2005
, “
Some Aspects on Gas-Solid Flow in a U-Bend: Numerical Investigation
,”
Powder Technol.
,
153
(
1
), pp.
1
13
.10.1016/j.powtec.2005.01.016
15.
McGlinchey
,
D.
,
Cowell
,
A.
, and
Crowe
,
R.
,
2012
, “
CFD Investigation of Dense Phase Pneumatic Conveying at a Pipeline Enlargement
,”
Particuology
,
10
(
2
), pp.
176
183
.10.1016/j.partic.2011.11.004
16.
McGlinchey
,
D.
,
Cowell
,
A.
,
Knight
,
E. A.
,
Pugh
,
J. R.
,
Mason
,
A.
, and
Foster
,
B.
,
2007
, “
Bend Pressure Drop Predictions Using the Euler-Euler Model in Dense Phase Pneumatic Conveying
,”
Part. Sci. Technol.
,
25
(
6
), pp.
495
506
.10.1080/02726350701492827
17.
Sahu
,
A. K.
,
Raghavan
,
V.
, and
Prasad
,
B. V. S. S. S.
,
2018
, “
Temperature Effects on Hydrodynamics of Dense Gas-Solid Flows: Application to Bubbling Fluidized Bed Reactors
,”
Int. J. Therm. Sci.
,
124
, pp.
387
398
.10.1016/j.ijthermalsci.2017.10.028
18.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2019
, “
Dilute Gas-Particle Flow Through Thin and Thick Orifice: A Computational Study Through Two Fluid Model
,”
Part. Sci. Technol.
,
38
(
6
), pp.
711
725
. 10.1080/02726351.2019.1566939
19.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Computation of Pressure Drop and Heat Transfer in Gas-Solid Suspension With Small Sized Particles in a Horizontal Pipe
,”
Part. Sci. Technol.
,
38
(
8
), pp.
985
998
.10.1080/02726351.2019.1649335
20.
Manjula
,
E. V. P.
,
Hiromi Ariyartne
,
W. K.
,
Ratnayake
,
C.
, and
Melaaen
,
M. C.
,
2017
, “
A Review of CFD Modelling Studies on Pneumatic Conveying and Challenges in Modeling Offshore Drill Cutting Transport
,”
Powder Technol.
,
305
, pp.
782
793
.10.1016/j.powtec.2016.10.026
21.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.10.1115/1.4025364
22.
Kartushinsky
,
A.
, and
Mlchaelides
,
E. E.
,
2007
, “
Gas-Solid Particle Flow in Horizontal Channels: Decomposition of the Particle-Phase Flow and Interparticle Collision Effects
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
702
712
.10.1115/1.2734202
23.
Klinzing
,
G. E.
,
2016
, “
Review of Unusual and Some Unexplained Phenomena in Pneumatic Conveying
,”
Part. Sci. Technol.
,
34
(
4
), pp.
424
431
.10.1080/02726351.2015.1137378
24.
Klinzing
,
G. E.
,
2018
, “
A Review of Pneumatic Conveying Status, Advances and Projections
,”
Powder Technol.
,
333
, pp.
78
90
.10.1016/j.powtec.2018.04.012
25.
Mills
,
D.
,
2016
,
Pneumatic Conveying Design Guide
,
Elsevier, Oxford, UK
.
26.
Zhou
,
L. X.
,
Liu
,
Y.
, and
Xu
,
Y.
,
2011
, “
Measurement and Simulation of the Two-Phase Velocity Correlation in Sudden-Expansion Gas – Particle Flows
,”
Acta Mech. Sin.
,
27
(
4
), pp.
494
501
.10.1007/s10409-011-0471-7
27.
Ruck
,
B.
, and
Makiola
,
B.
,
1988
, “
Particle Dispersion in a Single-Sided Backward-Facing Step Flow
,”
Int. J. Multiphase Flow
,
14
(
6
), pp.
787
800
.10.1016/0301-9322(88)90075-4
28.
Barton
,
E.
,
1996
, “
Computation of Dilute Particulate Laminar Flow Over a Backward Facing Step
,”
Int. J. Numer. Methods Fluids
,
22
(
1996
), pp.
211
221
.10.1002/(SICI)1097-0363(19960215)22:3<211::AID-FLD362>3.0.CO;2-T
29.
Fesser
,
J. R.
, and
Eaton
,
J. K.
,
1999
, “
Turbulence Modification by Particles in a Backward-Facing Step Flow
,”
J. Fluid Mech.
,
394
, pp.
97
117
.10.1017/S0022112099005741
30.
Fessler
,
J. R.
, and
Eaton
,
J. K.
,
1997
, “
Particle Respone in a Planner Sudden Expansion Flow
,”
Exp. Therm. Fluid Sci.
,
15
, pp.
413
423
.10.1016/S0894-1777(97)00010-1
31.
Mohanarangam
,
K.
,
Tu
,
J. Y.
, and
Chen
,
L.
,
2008
, “
Numerical Study of Particle Dispersion Behind a Sudden Expansion Geometry and Its Effect on Step Heights
,”
Comput. Chem. Eng.
,
32
, pp.
3187
3197
.10.1016/j.compchemeng.2008.05.007
32.
Tian
,
Z. F.
,
Tu
,
J. Y.
, and
Yeoh
,
G. H.
,
2005
, “
Numerical Simulation and Validation of Dilute Gas- Particle Flow Over a Backward-Facing Step
,”
Aerosol Sci. Technol.
,
39
, pp.
319
332
.10.1080/027868290930961
33.
Yu
,
K. F.
,
Lau
,
K. S.
, and
Chan
,
C. K.
,
2004
, “
Numerical Simulation of Gas-Particle Flow in a Single-Side Backward-Facing Step Flow
,”
J. Comput. Appl. Math.
,
163
, pp.
319
331
.10.1016/j.cam.2003.08.077
34.
Shang
,
Z.
,
2005
, “
CFD of Turbulent Transport of Particles Behind a Backward-Facing Step Using a New Model—k-e-SP
,”
Appl. Math. Model.
,
29
, pp.
885
901
.10.1016/j.apm.2004.11.002
35.
Chan
,
C. K.
,
Zhang
,
H. Q.
, and
Lau
,
K. S.
,
2001
, “
Numerical Simulation of Gas-Particle Flows Behind a Backward-Facing Step Using an Improved Stochastic Separated Flow Model
,”
Comput. Mech.
,
27
, pp.
412
417
.10.1007/s004660100253
36.
Mohanarangam
,
K.
, and
Tu
,
J. Y.
,
2007
, “
Two-Fluid Model for Particle-Turbulence Interaction in a Backward-Facing Step
,”
AIChE J.
,
53
(
9
), pp. 2254–2264.10.1002/aic.11248
37.
Lun
,
C. K. K.
, and
Bent
,
A. A.
,
1994
, “
Numerical Simulation of Inelastic Frictional Spheres in Simple Shear Flow
,”
J. Fluid Mech.
,
258
(
1
), pp.
335
353
.10.1017/S0022112094003356
38.
Behera
,
N.
,
Agarwal
,
V. K.
,
Jones
,
M. G.
, and
Williams
,
K. C.
,
2013
, “
Modeling and Analysis of Dilute Phase Pneumatic Conveying of Fine Particles
,”
Powder Technol.
,
249
, pp.
196
204
.10.1016/j.powtec.2013.08.014
39.
Senapati
,
S. K.
, and
Dash
,
S.
,
2019
, “
Computation of Pressure Drop and Heat Transfer in Gas-Solid Suspension With Small Sized Particles in a Horizontal Pipe
,”
Proceedings of the Twelve International Conference on Thermal Engineering: Theory and Applications
,
PDPU, Gandhinagar, India
, Feb. 23–26, pp.
1
3
.
40.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Pressure Recovery Characteristics for a Dilute Gas–Particle Suspension Flowing Vertically Downward in a Pipe With a Sudden Expansion: A Two-Fluid Modeling Approach
,”
Particuology
,
50
, pp.
100
111
.10.1016/j.partic.2019.07.001
41.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
(
1
), pp.
67
93
.10.1017/S0022112087000570
42.
Ansys Fluent
,
2012
,
User Guide (Release 15.0), Multiphase Flows
,
Ansys
, Canonsburg, PA.
43.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Pressure Recovery and Acceleration Length of Gas-Solid Suspension in an Abrupt Expansion – An Eulerian-Eulerian Approach
,”
Chem. Eng. Sci.
,
226
, p. 115820.10.1016/j.ces.2020.115820
44.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2021
, “
Computation of Pressure Drop for Dilute Gas–Solid Suspension Across Thin and Thick Orifices
,”
Particuology
,
55
, pp.
209
221
.10.1016/j.partic.2020.07.003
45.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2021
, “
Gas–Solid Flow in a Diffuser: Effect of Inter-Particle and Particle–Wall Collisions
,”
Particuology
,
57
, pp.
187
200
.10.1016/j.partic.2021.01.006
46.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2021
, “
Dilute Gas-Particle Suspension in a Diffuser: A Two-Fluid Modelling Approach
,”
Can. J. Chem. Eng.
,
100
, pp. s72–s93.10.1002/cjce.24131
47.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), pp.
078001
.10.1115/1.2960953
You do not currently have access to this content.