Abstract

The motion of bubbles in upflow in a vertical rotating closed channel is examined numerically, using a front tracking/finite volume method. The flow is driven upward by a constant pressure gradient. The Reynolds number is low enough so that the flow remains laminar and the Eötvös number is sufficiently low so the bubbles remain nearly spherical. A bubble is placed between the centerline and the walls and for low rotation rate the bubble moves to a wall, due to the lift force and the fluid shear near the walls, but for higher rotation rate the bubble moves to the center of the channel, due to the radial pressure gradient established by the rotation. For intermediate rotation rates, we find bubbles where the lift force and the pressure gradient balance and the bubbles remain between the centerline and the walls. We also examine the collective motion of a few bubbles and show that their dynamics are similar to what is observed for a single bubble.

References

1.
Li
,
L.
,
Ying
,
B.
,
Gu
,
H.
,
Xu
,
D.
,
Huang
,
C.
, and
Chen
,
S.
,
2020
, “
Experimental Study on the Separation Performance of a Full-Scale SG Steam-Water Separator
,”
Ann. Nucl. Energy
,
141
, p.
107330
.10.1016/j.anucene.2020.107330
2.
Zhang
,
T.
,
Huang
,
G.
,
Yin
,
J.
,
Zhang
,
Z.
,
Wang
,
D.
,
Sun
,
Y.
, and
Liao
,
Y.
,
2022
, “
Investigation on Swirl Instability in a Vane-Type Separator With Tomographic Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051402
.10.1115/1.4052547
3.
Swapna
,
R.
,
Markus
,
S.
,
Fanny
,
G.
,
Manuel
,
B.
, and
Uwe
,
H.
,
2015
, “
Visualization and Quantitative Analysis of Dispersive Mixing by a Helical Static Mixer in Upward co-Current Gas-Liquid Flow
,”
Chem. Eng. J.
,
262
, pp.
527
540
.10.1016/j.cej.2014.09.019
4.
Manglik
,
R. M.
,
2004
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
,
36
, pp.
183
265
.10.1016/S0065-2717(02)80007-7
5.
Xiaoming
,
L.
,
Lulu
,
Y.
,
Haoran
,
Y.
,
Limin
,
H.
, and
Yuling
,
L.
,
2019
, “
A Review of Vortex Tools Toward Liquid Unloading for the Oil and Gas Industry
,”
Chem. Eng. Process. Process Intensification
,
145
, p.
107679
.10.1016/j.cep.2019.107679
6.
Talbot
,
L.
,
1954
, “
Laminar Swirling Pipe Flow
,”
ASME J. Appl. Mech. Trans. ASME
,
21
(
1
), pp.
1
7
.10.1115/1.4010810
7.
Tianxing
,
Z.
,
Alshehhi
,
M.
,
Khezzar
,
L.
,
Yakang
,
X.
, and
Kharoua
,
N.
,
2020
, “
Experimental Investigation of Confined Swirling Flow and Its Interaction With a Bluff Body
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011102
.10.1115/1.4044482
8.
Greenspan
,
H. P.
,
1983
, “
On the Centrifugal Separation of a Mixture
,”
J. Fluid Mech.
,
127
(
-1
), pp.
91
101
.10.1017/S0022112083002633
9.
Gomez
,
L.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2004
, “
Swirling Gas-Liquid Two-Phase Flow-Experiment and Modeling Part I: Swirling Flow Field
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
935
942
.10.1115/1.1849253
10.
Yin
,
J.
,
Li
,
J.
,
Ma
,
Y.
,
Li
,
H.
,
Liu
,
W.
, and
Wang
,
D.
,
2015
, “
Study on the Air Core Formation of a Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091301
.10.1115/1.4030198
11.
Wen
,
L.
, and
Bai
,
B.
,
2019
, “
Transition From Bubble Flow to Slug Flow Along the Streamwise Direction in a Gas-Liquid Swirling Flow
,”
Chem. Eng. Sci.
,
202
, pp.
392
402
.10.1016/j.ces.2019.03.05
12.
Shuo
,
L.
,
Yang
,
L.
,
Zhang
,
D.
, and
Xu
,
J.
,
2018
, “
Separation Characteristics of the Gas and Liquid Phases in a Vane-Type Swirling Flow Field
,”
Int. J. Multiphase Flow
,
107
, pp.
131
145
.10.1016/j.ijmultiphaseflow.2018.05.025
13.
Tingting
,
Z.
,
Yalan
,
Q.
,
Junlian
,
Y.
,
Botao
,
Z.
, and
Dezhong
,
W.
,
2019
, “
Experimental Study on 3D Bubble Shape Evolution in Swirl Flow
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
368
375
.10.1016/j.expthermflusci.2018.12.007
14.
Tomomi
,
U.
, and
Ishiguro
,
Y.
,
2016
, “
Study of the Interactions Between Rising Air Bubbles and Vortex Core of Swirling Water Flow Around Vertical Axis
,”
Chem. Eng. Sci.
,
142
, pp.
137
143
.10.1016/j.ces.2015.11.042
15.
Tomomi
,
U.
, and
Sasaki
,
S.
,
2014
, “
Experimental Investigation of the Interaction Between Rising Bubbles and Swirling Water Flow
,”
Int. J. Chem. Eng.
,
2014
, pp.
1
10
.10.1155/2014/358241
16.
Hui
,
J.
,
Zhenqun
,
W.
,
Liejin
,
G.
, and
Xiaohui
,
S.
,
2018
, “
Numerical Investigation on the Two Phase Flow Behaviors in Supercritical Water Fluidized Bed With Swirling Flow Distributor
,”
Heat Transfer Eng.
,
39
(
17–18
), pp.
1593
1604
.10.1080/01457632.2017.1370314
17.
Gang
,
W.
,
Yan
,
C.
,
Fan
,
G.
,
Wang
,
J.
,
Xu
,
J.
,
Zeng
,
X.
, and
Liu
,
A.
,
2019
, “
Experimental Study on a Swirl-Vane Separator for Gas-Liquid Separation
,”
Chem. Eng. Res. Des.
,
151
, pp.
108
119
.10.1016/j.cherd.2019.09.003
18.
Rosenthal
,
D. K.
,
1962
, “
The Shape and Stability of a Bubble at the Axis of a Rotating Liquid
,”
J. Fluid Mech.
,
12
(
3
), pp.
358
366
.10.1017/S0022112062000269
19.
Magaud
,
F.
,
Najafi
,
A. F.
,
Angilella
,
J. R.
, and
Souhar
,
M.
,
2003
, “
Modeling and Qualitative Experiments on Swirling Bubbly Flows: Single Bubble With Rossby Number of Order 1
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
239
246
.10.1115/1.1539870
20.
Toshiaki
,
F.
,
Takeuchi
,
S.
, and
Kajishima
,
T.
,
2014
, “
Effects of Curvature and Vorticity in Rotating Flows on Hydrodynamic Forces Acting on a Sphere
,”
Int. J. Multiphase Flow
,
58
, pp.
292
300
.10.1016/j.ijmultiphaseflow.2013.10.006
21.
Bing
,
C.
,
Ni
,
B.
, and
Wu
,
Q.
,
2016
, “
Bubble-Bubble Interaction Effects on Dynamics of Multiple Bubbles in a Vortical Flow Field
,”
Adv. Mech. Eng.
,
8
(
2
), p.
168781401663170
.10.1177/1687814016631708
22.
Hsiao
,
C.
,
Ma
,
J.
, and
Chahine
,
G. L.
,
2017
, “
Numerical Study of Gravity Effects on Phase Separation in a Swirl Chamber
,”
Chem., Eng., Sci.
,
165
, pp.
177
185
.10.1016/j.ces.2017.03.005
23.
Yousuf
,
A.
,
Turan
,
A.
, and
Al-Mazidi
,
M.
,
2015
, “
Thermocapillary Bubble Flow and Coalescence in a Rotating Cylinder: A 3D Study
,”
Acta Astronaut.
,
117
, pp.
484
496
.10.1016/j.actaastro.2015.09.009
24.
Maneshian
,
B.
,
Javadi
,
K.
, and
Rahni
,
M. T.
,
2018
, “
Bubble Dynamics in Rotating Flow Under an Accelerating Field
,”
Phys. Fluids
,
30
(
8
), p.
082108
.10.1063/1.5031878
25.
Ervin
,
E. A.
, and
Tryggvason
,
G.
,
1997
, “
The Rise of Bubbles in a Vertical Shear Flow
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
443
449
.10.1115/1.2819153
26.
Lu
,
J.
,
Biswas
,
S.
, and
Tryggvason
,
G.
,
2006
, “
A DNS Study of Laminar Bubbly Flows in a Vertical Channel
,”
Int. J. Multiphase Flow
,
32
(
6
), pp.
643
660
.10.1016/j.ijmultiphaseflow.2006.02.003
27.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2011
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
,
Cambridge University Press
, Cambridge, UK.
28.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
29.
Falgout
,
R. D.
, and
Meier
,
Y. U.
,
2002
, “
Hypre: A Library of High Performance Preconditioners
,”
Proceedings of the International Conference on Computational Science-Part III, ICCS '02
,
Springer-Verlag
, Berlin, Heidelberg, Apr. 21–24, pp.
632
641
.
30.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
1998
, “
Direct Numerical Simulations of Bubbly Flows. part i—Low Reynolds Number Arrays
,”
J. Fluid Mech.
,
377
, pp.
313
345
.10.1017/S0022112098003176
31.
Bunner
,
B.
, and
Tryggvason
,
G.
,
1999
, “
Direct Numerical Simulations of Three-Dimensional Bubbly Flows
,”
Phys. Fluids
,
11
(
8
), pp.
1967
1969
.10.1063/1.870105
32.
Bunner
,
B.
, and
Tryggvason
,
G.
,
2003
, “
Effect of Bubble Deformation on the Stability and Properties of Bubbly Flows
,”
J. Fluid Mech.
,
495
, pp.
77
118
.10.1017/S0022112003006293
33.
Legendre
,
D.
, and
Magnaudet
,
J.
,
1998
, “
The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow
,”
J. Fluid Mech.
,
368
, pp.
81
126
.10.1017/S0022112098001621
34.
Lee
,
W.
, and
Lee
,
J.-Y.
,
2020
, “
Experiment and Modeling of Lift Force Acting on Single High Reynolds Number Bubbles Rising in Linear Shear Flow
,”
Exp. Therm. Fluids Sci.
,
115
, p.
110085
.10.1016/j.expthermflusci.2020.110085
35.
Tomiyama
,
A.
,
Tamai
,
H.
,
Zun
,
I.
, and
Hosokawa
,
S.
,
2002
, “
Transverse Migration of Single Bubbles in Simple Shear Flows
,”
Chem. Eng. Sci.
,
57
(
11
), pp.
1849
1858
.10.1016/S0009-2509(02)00085-4
36.
Hessenkemper
,
H.
,
Ziegenhein
,
T.
,
Rzehak
,
R.
,
Lucas
,
D.
, and
Tomiyama
,
A.
,
2021
, “
Lift Force Coefficient of Ellipsoidal Single Bubbles in Water
,”
Int. J. Multiphase Flow
,
138
, p.
103587
.10.1016/j.ijmultiphaseflow.2021.103587
You do not currently have access to this content.