Abstract

We consider the scenario of an unsteady viscous flow between two coaxial finite disks, one stationary and the other rotating with an axial velocity changing impulsively from zero to a constant value. The three-dimensional (3D) incompressible Navier–Stokes equations are analytically solved by postulating the polynomial profiles for the axial and circumferential velocity components and by employing the open-end condition of zero pressure difference and an integral approach. It is shown that the time-dependent squeezing of the fluid between the disks and the edge effects of the finite open-ended disks in the flow domain are determined by the compressing Reynolds number and the rotating Reynolds number for the case of laminar flow at low Reynolds numbers and small aspect ratios. The general explicit formulae are derived for the velocity and pressure distributions as a function of the compressing and rotating Reynolds numbers in this unsteady flow process (and the steady-state solutions are then obtainable as the compressing Reynolds number vanishes). A simple theoretical relationship between the radial and axial pressure gradients is deduced to hinge the radial and circumferential velocity components together. The values of the compression and rotation Reynolds numbers suitable to this theory are also suggested for the problem of rotating disk flows at low Reynolds numbers. The validity of the theoretical predictions for the circumferential, radial, and axial velocity components is partially verified through comparison with previous steady experimental and numerical results. These analytical results have the immediate engineering applications of fluid flows with varying gap widths, including wet brakes, wet clutches, hydrostatic bearings, face seals, and rotating heat exchangers.

References

1.
Kármán
,
T. V.
,
1921
, “
Über Laminare Und Turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
(
4
), pp.
233
252
.10.1002/zamm.19210010401
2.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
.10.1093/qjmam/4.1.29
3.
Stewartson
,
K.
,
1953
, “
On the Flow Between Two Rotating Coaxial Disks
,”
Proc. Cambr. Phil. Soc.
,
49
(
2
), pp.
333
341
.10.1017/S0305004100028437
4.
Zandbergen
,
P. J.
, and
Dijkstra
,
D.
,
1987
, “
Von Kármán Swirling Flows
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
465
491
.10.1146/annurev.fl.19.010187.002341
5.
Zhao
,
B.
,
2020
, “
Integration Method of Thermal Convection Characteristics Prediction for Unsteady Laminar Flows During Initial Braking Stage of Wet Brakes
,”
J. Mech. Eng.
,
56
(
24
), pp.
198
207
(in Chinese).10.3901/JME.2020.24.198
6.
Singh
,
S. K.
,
Abbassi
,
H.
, and
Tamamidis
,
P.
,
2018
, “
3D Investigation Into the Thermal Behavior of the Wet Multi-Disk Axle Brake of an Off-Highway Machinery
,”
Appl. Therm. Eng.
,
136
, pp.
576
588
.10.1016/j.applthermaleng.2018.01.004
7.
Yuan
,
Y.
,
Liu
,
E. A.
,
Hill
,
J.
, and
Zou
,
Q.
,
2007
, “
An Improved Hydrodynamic Model for Open Wet Transmission Clutches
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
333
337
.10.1115/1.2427088
8.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Mathematical Model and Experimental Evaluation of Drag Torque in Disengaged Wet Clutches
,”
ISRN Tribol.
,
2013
, pp.
1
16
.10.5402/2013/206539
9.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2014
, “
Model for Predicting Drag Torque in Open Multi-Disks Wet Clutches
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021103
.10.1115/1.4025650
10.
Wu
,
P.
,
Xu
,
J.
, and
Zhou
,
X.
,
2019
, “
Numerical and Experimental Research on Engagement Process of Wet Multi-Plate Friction Clutches With Groove Consideration
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
10
), pp.
1464
1482
.10.1177/1350650119866045
11.
Leighton
,
M.
,
Morris
,
N.
,
Trimmer
,
G.
, King, P. D., and Rahnejat, H.,
2018
, “
Efficiency of Disengaged Wet Brake Packs
,”
Proc. Inst. Mech. Eng. Part D: J Autom. Eng.
,
233
(
6
), pp.
1
8
.10.1177/0954407018758567
12.
Morris
,
N.
,
Davies
,
J.
,
Leighton
,
M.
,
King
,
P. D.
, and
Rahnejat
,
H.
,
2020
, “
Oil Film Separation and Drag Torque in Disengaged Wet Brakes
,”
Proc. Inst. Mech. Eng. Part D J Autom. Eng.
,
234
(
1
), pp.
17
27
.10.1177/0954407019844358
13.
Aphale
,
C. R.
,
Cho
,
J.
,
Schultz
,
W. W.
,
Ceccio
,
S. L.
,
Yoshioka
,
T.
, and
Hiraki
,
H.
,
2006
, “
Modeling and Parametric Study of Torque in Open Clutch Plates
,”
ASME J. Tribol.
,
128
(
2
), pp.
422
430
.10.1115/1.2162553
14.
Rogkas
,
N.
,
Vasileiou
,
G.
,
Tsolakis
,
E.
,
Spitas
,
V.
, and
Zalimidis
,
P.
,
2019
, “
Fast Modelling and Simulation of the Dynamic Behaviour of a Wet Multidisc Clutch During the Engagement Phase
,”
MATEC Web Conf.
,
287
(
2
), p.
01018
.10.1051/matecconf/201928701018
15.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1960
, “
Mass Transfer, Flow, and Heat Transfer About a Rotating Disk
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
82
(
4
), pp.
294
302
.10.1115/1.3679937
16.
Dowson
,
D.
,
1961
, “
Inertia Effects in Hydrostatic Thrust Bearings
,”
ASME J. Basic Eng.
,
83
(
2
), pp.
227
234
.10.1115/1.3658931
17.
Coombs
,
J. A.
, and
Dowson
,
D.
,
1964
, “
An Experimental Investigation of the Effects of Lubricant Inertia in Hydrostatic Thrust Bearings
,”
Proc. Inst. Mech. Eng.
,
179
(
3
), pp.
96
108
.10.1243/PIME_CONF_1964_179_270_02
18.
Szeri
,
A. Z.
,
Schneider
,
S. J.
,
Labbe
,
F.
, and
Kaufman
,
H. N.
,
1983
, “
Flow Between Rotating Disks, Part 1. Basic Flow
,”
J. Fluid Mech.
,
134
(
-1
), pp.
103
131
.10.1017/S0022112083003250
19.
Brady
,
J. F.
, and
Durlofsky
,
L.
,
1987
, “
On Rotating Disk Flow
,”
J. Fluid Mech.
,
175
(
-1
), pp.
363
394
.10.1017/S0022112087000430
20.
Delgado
,
A.
,
2000
, “
On the Rotationally Symmetric Laminar Flow of Newtonian Fluids Induced by Rotating Disks
,”
Lect. Notes Phys.
,
549
, pp.
417
439
.10.1007/3-540-45549-3
21.
Cochran
,
W. G.
,
1934
, “
The Flow Due to a Rotating Disc
,”
Proc. Cambr. Philos. Soc.
,
30
(
3
), pp.
365
375
.10.1017/S0305004100012561
22.
Rogers
,
M. H.
, and
Lance
,
G. N.
,
1960
, “
The Rotationally Symmetric Flow of a Viscous Fluid in the Presence of an Infinite Rotating Disk
,”
J. Fluid Mech.
,
7
(
4
), pp.
617
631
.10.1017/S0022112060000335
23.
Yang
,
C.
, and
Liao
,
S.
,
2006
, “
On the Explicit, Purely Analytic Solution of Von Kármán Swirling Viscous Flow
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
1
), pp.
83
93
.10.1016/j.cnsns.2004.05.006
24.
Yao
,
B.
, and
Lian
,
L.
,
2018
, “
A New Analysis of the Rotationally Symmetric Flow in the Presence of an Infinite Rotating Disk
,”
Int. J. Mech. Sci.
,
136
, pp.
106
111
.10.1016/j.ijmecsci.2017.12.023
25.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1960
, “
Flow About an Unsteadily Rotating Disc
,”
J. Aero/Space Sci.
,
27
(
4
), pp.
252
256
. 290.10.2514/8.8497
26.
Greenspan
,
H. P.
, and
Howard
,
L. N.
,
1963
, “
On a Time-Dependent Motion of a Rotating Fluid
,”
J. Fluid Mech.
,
17
(
03
), pp.
385
404
.10.1017/S0022112063001415
27.
Benton
,
E. R.
,
1966
, “
On the Flow Due to a Rotating Disk
,”
J. Fluid Mech.
,
24
(
04
), pp.
781
800
.10.1017/S0022112066001009
28.
Delgado
,
A.
, and
Rath
,
H. J.
,
1990
, “
Rotating Disks Flow Under Highly Reduced Gravity-Infinite Disks With Different Velocities Rotating at Moderate Re
,”
Arch. Mech.
,
42
, pp.
443
462
.
29.
Stuart
,
J. T.
,
1954
, “
On the Effects of Uniform Suction on the Steady Flow Due to a Rotating Disk
,”
Q. J. Mech. Appl. Math.
,
7
(
4
), pp.
446
457
.10.1093/qjmam/7.4.446
30.
Evans
,
D. J.
,
1969
, “
The Rotationally Symmetric Flow of a Viscous Fluid in the Presence of an Infinite Rotating Disc With Uniform Suction
,”
Q. J. Mech. Appl. Math.
,
22
(
4
), pp.
467
485
.10.1093/qjmam/22.4.467
31.
Ockendon
,
H.
,
1972
, “
An Asymptotic Solution for Steady Flow Above an Infinite Rotating Disc With Suction
,”
Q. J. Mech. Appl. Math.
,
25
(
3
), pp.
291
301
.10.1093/qjmam/25.3.291
32.
Yao
,
B.
, and
Lian
,
L.
,
2019
, “
Series Solution of the Rotationally Symmetric Flow in the Presence of an Infinite Rotating Disk With Uniform Suction
,”
Eur. J. Mech./B Fluids
,
74
, pp.
159
166
.10.1016/j.euromechflu.2018.11.012
33.
Kuiken
,
H. K.
,
1971
, “
The Effect of Normal Blowing on the Flow Near a Rotating Disk of Infinite Extent
,”
J. Fluid Mech.
,
47
(
4
), pp.
789
798
.10.1017/S002211207100137X
34.
Mellor
,
G. L.
,
Chapple
,
P. J.
, and
Stokes
,
V. K.
,
1968
, “
On the Flow Between a Rotating and a Stationary Disk
,”
J. Fluid Mech.
,
31
(
01
), pp.
95
112
.10.1017/S0022112068000054
35.
Nguyen
,
N. D.
,
Ribault
,
J. P.
, and
Florent
,
P.
,
1975
, “
Multiple Solutions for Flow Between Coaxial Disks
,”
J. Fluid Mech.
,
68
(
02
), pp.
369
388
.10.1017/S0022112075000869
36.
Holodniok
,
M.
,
Kubicek
,
M.
, and
Hlavácek
,
V.
,
1977
, “
Computation of the Flow Between Two Rotating Coaxial Disks
,”
J. Fluid Mech.
,
81
(
4
), pp.
689
699
.10.1017/S0022112077002298
37.
Wilson
,
L. O.
, and
Schryer
,
N. L.
,
1978
, “
Flow Between a Stationary and a Rotation Disk With Suction
,”
J. Fluid Mech.
,
85
(
3
), pp.
479
496
.10.1017/S0022112078000750
38.
Pearson
,
C. E.
,
1965
, “
Numerical Solutions for the Time-Dependent Viscous Flow Between Two Rotating Coaxial Disks
,”
J. Fluid Mech.
,
21
(
4
), pp.
623
633
.10.1017/S002211206500037X
39.
Lance
,
G. N.
, and
Rogers
,
M. H.
,
1962
, “
The Axially Symmetric Flow of a Viscous Fluid Between Two Infinite Rotating Disk
,”
Proc. R. Soc. Lond. A
,
266
, pp.
109
121
.10.1098/rspa.1962.0050
40.
Szeto
,
R. K.-H.
,
1978
, “
The Flow Between Rotating Coaxial Disks
,” Ph.D. thesis,
California Institute of Technology
, Los Angeles, CA.
41.
Barna
,
I. F.
, and
Mátyás
,
L.
,
2014
, “
Analytic Solutions for the Three-Dimensional Compressible Navier-Stokes Equation
,”
Fluid Dyn. Res.
,
46
(
5
), p.
055508
.10.1088/0169-5983/46/5/055508
42.
Szeri
,
A. Z.
, and
Adams
,
M. L.
,
1976
, “
Source Flow Between a Stationary and a Rotating Disk (Part 1: Thin-Film Approximation)
,”
Mech. Res. Commun.
,
3
(
3
), pp.
231
232
.10.1016/0093-6413(76)90018-5
43.
Szeri
,
A. Z.
, and
Adams
,
M. L.
,
1978
, “
Laminar Throughflow Between Closely Spaced Rotating Disks
,”
J. Fluid Mech.
,
86
(
1
), pp.
1
14
.10.1017/S002211207800097X
44.
Adams
,
M. L.
, and
Szeri
,
A. Z.
,
1982
, “
Incompressible Flow Between Finite Disks
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
1
9
.10.1115/1.3161968
45.
Bhattacharyya
,
S.
, and
Pal
,
A.
,
1999
, “
On the Flow Between Two Rotating Disks Enclosed by a Cylinder
,”
Acta Mech.
,
135
(
1–2
), pp.
27
40
.10.1007/BF01179044
46.
Reddy
,
K. G.
,
1980
, “
Heat Transfer Due to the Flow Between Two Moderately Rotating Porous Disks
,”
Phys. Lett.
,
78
(
3
), pp.
277
280
.10.1016/0375-9601(80)90092-4
47.
Innes
,
G. D. R.
,
1973
, “
Phenomena in Unsteady Rotating Flows for Finite Cylindrical Geometry
,”
Phys. Fluids
,
16
(
12
), p.
2355
.10.1063/1.1694308
48.
Picha
,
K. G.
, and
Eckert
,
E. R. G.
,
1958
, “
Study of the Air Flow Between Coaxial Disks Rotating With Arbitrary Velocities in an Open or Enclosed Space
,”
Proceedings Third U.S. National Congress of Applied Mechanics
, Providence, RI, June 11–14, pp.
791
798
.
49.
Bien
,
F.
, and
Penner
,
S. S.
,
1970
, “
Velocity Profiles in Steady and Unsteady Rotating Flows for a Finite Cylindrical Geometry
,”
Phys. Fluids
,
13
(
7
), pp.
1665
1671
.10.1063/1.1693138
50.
Dijkstra
,
D.
, and
VAN Heijst
,
G. J. F.
,
1983
, “
The Flow Between Two Finite Rotating Disks Enclosed by a Cylinder
,”
J. Fluid Mech.
,
128
(
-1
), pp.
123
154
.10.1017/S0022112083000415
51.
Holman
,
J. P.
,
2010
,
Heat Transfer
, 10th ed.,
McGraw-Hill Higher Education
,
Boston, MA
.
52.
Ellwood
,
C. M.
, and
Korchinsky
,
W. J.
,
2000
, “
The Heating, by Viscous Dissipation, of Liquids Flowing Across an Enclosed Rotating Disc
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
1035
1050
.10.1016/S0017-9310(99)00183-0
53.
Zhao
,
B.
,
1997
, “
Theoretical and Experimental Study on Drag Torque in a Hydroviscous Dynamometer
,” Master thesis,
Beijing Institute of Technology
,
Beijing, China.
(in Chinese)
54.
Schlichting
,
H.
, and
Gersten
,
K. M.
,
2017
,
Boundary-Layer Theory
, 9th ed.,
Springer-Verlag
,
Berlin, Germany
.
55.
Tang
,
W.
,
2022
, “
Theoretical and Numerical Study on the Exact Solutions of 3D the Navier-Stokes Equations for Von Kármán Swirling Viscous Flow Between Two Finite Disks
,” Master thesis,
Sichuan University
,
Chengdu
(in Chinese).
56.
Wei
,
C.
, and
Zhao
,
J.
,
1996
,
On the Technology of Hydroviscous Drive
,
National Defense Industry Press
,
Beijing
(in Chinese).
57.
Whitham
,
G. B.
,
1999
,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
58.
Hopf
,
E.
,
1950
, “
The Partial Differential Equation ut+Uux=Μxx
,”
Commun. Pure Appl. Math.
,
3
(
3
), pp.
201
230
.10.1002/cpa.3160030302
59.
Cole
,
J. D.
,
1951
, “
On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics
,”
Q. Appl. Math.
,
9
(
3
), pp.
225
236
.10.1090/qam/42889
60.
Brady
,
J. F.
, and
Acrivos
,
A.
,
1982
, “
Closed-Cavity Laminar Flows at Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
115
(
-1
), pp.
427
442
.10.1017/S0022112082000834
61.
Zandbergen
,
P. J.
, and
Dijkstra
,
D.
,
1977
, “
Non-Unique Solutions of the Navier-Stokes Equations for the Karman Swirling Flows
,”
J. Eng. Math.
,
11
(
2
), pp.
167
188
.10.1007/BF01535696
You do not currently have access to this content.