Abstract

Off-design operation leads to the development of flow instabilities like vortex breakdown phenomenon which manifests as an enlarged vortex core in the draft tube at high load operating conditions. These flow instabilities are known to potentially have detrimental effects on turbine performance necessitating investigations on their formative and mitigation mechanisms. This work clarifies the evolving velocity maps characterizing vortex breakdown seen in a model Francis turbine draft tube during the transition from high load to best efficiency point. Velocity measurements have been performed inside a draft tube cone using a 2D particle image velocimetry system. Results show a wake-like velocity profile characterizing the vortex core in the draft tube cone at high load condition. The vortex core is a centrally located flow feature embodying a quasi-stagnant flow with recirculation regions. Surrounding the core, an axial outflow is seen with shear layers arising at the interface of core and outflow due to a substantial velocity gradient. Mitigation of this vortex core through a load rejection operation was further investigated. It is seen that as the flowrate approaches the best efficiency point, the shear layers between the outflow and central stagnation region break. The breakup leads to an axially dominated and streamlined flow. This is enabled by the reduction of the swirl until no central flow separation at the stagnation point occurs. The flow at the best efficiency point is thus devoid of the vortex core due to the absence of flow stagnation, the primary instability causing the core development.

References

1.
IRENA
,
2021
, “
World Energy Transitions Outlook
,” International Renewable Energy Agency, Abu Dhabi, UAE.
2.
IRENA
,
2020
, “
Global Renewables Outlook: Energy Transformation 2050
,” International Renewable Energy Agency, Abu Dhabi, UAE.
3.
Kondziella
,
H.
, and
Bruckner
,
T.
,
2016
, “
Flexibility Requirements of Renewable Energy Based Electricity Systems—A Review of Research Results and Methodologies
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
10
22
.10.1016/j.rser.2015.07.199
4.
Kopiske
,
J.
,
Spieker
,
S.
, and
Tsatsaronis
,
G.
,
2017
, “
Value of Power Plant Flexibility in Power Systems With High Shares of Variable Renewables: A Scenario Outlook for Germany 2035
,”
Energy
,
137
, pp.
823
833
.10.1016/j.energy.2017.04.138
5.
English
,
J.
,
Niet
,
T.
,
Lyseng
,
B.
,
Keller
,
V.
,
Palmer-Wilson
,
K.
,
Robertson
,
B.
,
Wild
,
P.
, and
Rowe
,
A.
,
2020
, “
Flexibility Requirements and Electricity System Planning: Assessing Inter-Regional Coordination With Large Penetrations of Variable Renewable Supplies
,”
Renewable Energy
,
145
, pp.
2770
2782
.10.1016/j.renene.2019.07.097
6.
Auer
,
H.
, and
Haas
,
R.
,
2016
, “
On Integrating Large Shares of Variable Renewables Into the Electricity System
,”
Energy
,
115
, pp.
1592
1601
.10.1016/j.energy.2016.05.067
7.
Masoodi
,
F. A.
, and
Goyal
,
R.
,
2021
, “
Efficacy of Ancillary Fluid Injection Technique for Mitigation of Vortex Rope in Hydraulic Turbines: A Review
,”
Mater. Today: Proc.
,
47
, pp.
3043
3053
.10.1016/j.matpr.2021.05.618
8.
Huertas‐Hernando
,
D.
,
Farahmand
,
H.
,
Holttinen
,
H.
,
Kiviluoma
,
J.
,
Rinne
,
E.
,
Söder
,
L.
, and
Milligan
,
M.
, et al.,
2017
, “
Hydro Power Flexibility for Power Systems With Variable Renewable Energy Sources: An IEA Task 25 Collaboration
,”
WIREs Energy Environ.
,
6
(
1
), p.
E220
.10.1002/wene.220
9.
Goyal
,
R.
,
Cervantes
,
M. J.
, and
Gandhi
,
B. K.
,
2017
, “
Vortex Rope Formation in a High Head Model Francis Turbine
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041102
.10.1115/1.4035224
10.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Michel
,
C. J.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.10.1080/00221686.2012.732971
11.
Goyal
,
R.
, and
Gandhi
,
B. K.
,
2018
, “
Review of Hydrodynamics Instabilities in Francis Turbine During Off-Design and Transient Operations
,”
Renewable Energy
,
116
, pp.
697
709
.10.1016/j.renene.2017.10.012
12.
Drofler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
,
London
.
13.
Trivedi
,
C.
, and
Cervantes
,
M. J.
,
2017
, “
Fluid-Structure Interactions in Francis Turbines: A Perspective Review
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
87
101
.10.1016/j.rser.2016.09.121
14.
Goyal
,
R.
,
Gandhi
,
B. K.
, and
Cervantes
,
M. J.
,
2018
, “
PIV Measurements in Francis Turbine—A Review and Application to Transient Operations
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
2976
2991
.10.1016/j.rser.2017.06.108
15.
Rodriguez
,
D.
,
Rivetti
,
A.
, and
Lucino
,
C.
,
2016
, “
High Load Vortex Oscillations Developed in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
8
), p.
082006
.10.1088/1755-1315/49/8/082006
16.
Goyal
,
R.
,
Gandhi
,
B.
, and
Cervantes
,
M.
,
2016
, “
2D PIV and Pressure Measurements in High Head Model Francis Turbine During High Load Operating Condition
,”
Proceedings of the 6th International 43rd National Conference on Fluid Mechanics and Fluid Power
, MNNITA,
Allahabad, India, Dec. 15–17, pp. 1–6
.
17.
KC
,
A.
,
Lee
,
Y.
, and
Thapa
,
B.
,
2016
, “
CFD Study on Prediction of Vortex Shedding in Draft Tube of Francis Turbine and Vortex Control Techniques
,”
Renewable Energy
,
86
, pp.
1406
1421
.10.1016/j.renene.2015.09.041
18.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Bossio
,
M.
,
2017
, “
Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities
,”
Energies
,
10
(
12
), p.
2124
.10.3390/en10122124
19.
Ludwieg
,
H.
,
1960
, “
Stabilität Der Strömung in Einem Zylindrischen Ringraum
,”
Z. Flugwiss.
,
8
(
5
), pp.
135
140
.
20.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.10.1146/annurev.fl.04.010172.001211
21.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
22.
Okulov
,
V. L.
,
1996
, “
The Transition From Right to Left Helical Symmetry During Vortex Breakdown
,”
Tech. Phys. Lett.
,
22
(
10
), pp.
798
800
.
23.
Delery
,
J. M.
,
1994
, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
,
30
(
1
), pp.
1
59
.10.1016/0376-0421(94)90002-7
24.
Xungang
,
S.
, and
Xiaowen
,
S.
,
1987
, “
Relation Between the Quasi-Cylindrical Approximation and the Critical Classification for Swirling Flow
,”
Acta Mech. Sin.
,
3
(
4
), pp.
304
314
.10.1007/BF02486816
25.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.10.1016/0376-0421(88)90007-3
26.
Velte
,
C. M.
,
Okulov
,
V. L.
, and
Hansen
,
M. O. L.
,
2011
, “
Alteration of Helical Vortex Core Without Change in Flow Topology
,”
Phys. Fluids
,
23
(
5
), p.
051707
.10.1063/1.3592800
27.
Sorensen
,
J. N.
, and
Okulov
,
V. L.
,
2012
, “
Analysis of Different Vortex Breakdown States
,”
XXIII ICTAM
,
Beijing, China
, Aug. 19–24, pp.
19
24
.
28.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
29.
Goyal
,
R.
,
Gandhi
,
B. K.
, and
Cervantes
,
M. J.
,
2017
, “
Experimental Study of Mitigation of a Spiral Vortex Breakdown at High Reynolds Number Under an Adverse Pressure Gradient
,”
Phys. Fluids
,
29
(
10
), pp.
104
104
.10.1063/1.4999123
30.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1986
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
31.
Harvey
,
J. K.
,
1962
, “
Some Observations of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
4
), p.
585
.10.1017/S0022112062001470
32.
Sarpkaya
,
T.
,
1971
, “
Vortex Breakdown in Swirling Conical Flows
,”
AIAA J.
,
9
(
9
), pp.
1792
1799
.10.2514/3.49981
33.
Faler
,
J. H.
, and
Leibovich
,
S.
,
1977
, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
,
20
(
9
), pp.
1385
1400
.10.1063/1.862033
34.
Escudier
,
M. P.
, and
Zehnder
,
N.
,
1982
, “
Vortex-Flow Regimes
,”
J. Fluid Mech.
,
115
, pp.
105
121
.10.1017/S0022112082000676
35.
Lambourne
,
N. C.
, and
Bryer
,
D. W.
,
1962
, “
The Bursting of Leading-Edge Vortices-Some Observations and Discussion of the Phenomenon
,”
Aeronautical Research Council
, International Renewable Energy Agency, Abu Dhabi, UAE, pp.
1
35
,
Report No. 3282.
36.
Brücker
,
C.
,
1993
, “
Study of Vortex Breakdown by Particle Tracking Velocimetry (PTV): Part 2: Spiral-Type Vortex Breakdown
,”
Exp. Fluids
,
14
(
1–2
), pp.
133
139
.10.1007/BF00196996
37.
Leibovich
,
S.
,
1984
, “
Vortex Stability and Breakdown—Survey and Extension
,”
AIAA J.
,
22
(
9
), pp.
1192
1206
.10.2514/3.8761
38.
Chanaud
,
R. C.
,
1965
, “
Observations of Oscillatory Motion in Certain Swirling Flows
,”
J. Fluid Mech.
,
21
(
1
), pp.
111
127
.10.1017/S0022112065000083
39.
Novak
,
F.
, and
Sarpkaya
,
T.
,
2000
, “
Turbulent Vortex Breakdown at High Reynolds Numbers
,”
AIAA J.
,
38
(
5
), pp.
825
834
.10.2514/2.1036
40.
Koutnik
,
J.
, Faigle, P., and Moser, W.,
2008
, “
Pressure Fluctuations in Francis Turbines—Theoretical Prediction and Impact on Turbine
,”
Proceedings of the 24th IAHR Symposium
, Iguaçu, Brazil, p.
118
.
41.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Test, 2nd Edition
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 60193.
42.
IEC
,
1991
, “
Field Acceptant Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 60041:1991(E).
43.
Goyal
,
R.
,
2020
, “
Vortex Core Formation in a Francis Turbine During Transient Operation From Best Efficiency Point to High Load
,”
Phys. Fluids
,
32
(
7
), p.
074109
.10.1063/5.0012227
44.
Andersson
,
U.
, “
Test Case T-Some New Results and Updates Since Workshop 1
,”
The Second ERCOFTAC Workshop on Draft Tube Flow, Turbine 99
,
Alvkarleby, Sweden, pp. 1–11
.
45.
Sundstrom
,
L. R. J.
,
Amiri
,
K.
,
Bergan
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2013
, “
LDA Measurements in the Francis-99 Draft Tube Cone
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p.
022012
.10.1088/1755-1315/22/2/022012
46.
Amiri
,
K.
,
Mulu
,
B.
,
Raisee
,
M.
, and
Cervantes
,
M. J.
,
2016
, “
Experimental Study on Flow Asymmetry After the Draft Tube Bend of a Kaplan Turbine
,”
Adv. Appl. Fluid Mech.
,
19
(
2
), pp.
441
472
.10.17654/FM019020441
47.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
4
), pp.
593
629
.10.1017/S0022112062001482
You do not currently have access to this content.