Abstract

In large low-lift pump stations, the pump assembly comprises an inlet conduit, a pump, and an outlet conduit. A short conical frustum section that connects the elbow section with the impeller inlet directly affects the impeller inflow state, thereby influencing the overall performance. Therefore, investigating the conical frustum section contributes to studying the effect of inflow states on the performances of pump assemblies and similar pumping systems. To improve the pump assembly efficiency, three parameters of the conical frustum section, i.e., the contraction angle, height, and centerline inclination angle, are investigated and optimized via univariate and multivariate analyses. The flow field and external characteristics of the pump assembly are investigated via computational fluid dynamics simulation with a constant head. Furthermore, a comprehensive analysis and discussion of the performance improvement mechanisms are presented. The results indicate that the axial velocity distribution at the impeller inlet conforming to the cascade high-efficiency characteristics will achieve a better pump performance compared with a uniform distribution. The pump efficiency distribution can be predicted and visualized based on the cascade efficiency characteristics and the flow state at the impeller inlet using a machine learning method. In addition, the directions and distribution of the lateral and axial components of the inflow velocities have great impacts on the circulation distribution. A sensible circulation distribution at the guide vane outlet can suppress the entropy production and reduce hydraulic loss of the outlet conduit. In this case, a significant increase in the pump assembly efficiency is obtained.

References

1.
Guan, X., Huang, D., H., and Liu, H.,
2002
, “
Some Noteworthy Problems in the Selection of Large Axial-Flow Pump of South-to-North Water Diversion Project
,” Pump Technol., (
2
), pp.
13
16
.
2.
Qiu
,
B.
,
2005
,
Theory and Key Technology of Large and Medium-Sized Pumping Device
,
China Water Power Press
, Beijing, China.
3.
Chen
,
J.
,
Li
,
Q.
,
Xu
,
J.
,
Li
,
R.
, and
Chu
,
X.
,
2008
, “
Present Situation of Pumping Station in China and Mission of Renewal and Renovation on 11th Five-Year Plan
,”
China Rural Water Hydropower
,
28
(
2
), p.
5
.10.3880/j.issn.1006-7647.2008.02.022
4.
Gao
,
X.
,
Tian
,
Y.
, and
Sun
,
B.
,
2018
, “
Shape Optimization of bi-Directional Flow Passage Components Based on a Genetic Algorithm and Computational Fluid Dynamics
,”
Eng. Optim.
,
50
(
8
), pp.
1287
1303
.10.1080/0305215X.2017.1400543
5.
Gao
,
X.
,
Tian
,
Y.
, and
Sun
,
B.
,
2018
, “
Multi-Objective Optimization Design of Bidirectional Flow Passage Components Using RSM and NSGA II: A Case Study of Inlet/Outlet Diffusion Segment in Pumped Storage Power Station
,”
Renewable Energy
,
115
, pp.
999
1013
.10.1016/j.renene.2017.09.011
6.
Feng
,
W. M.
,
Pan
,
J. Y.
,
Guo
,
Z. W.
, and
Cheng
,
Q.
, “
The Effects of Variable-Inlet Guide Vanes on Performance of an Axial Flow Pump With Tip Clearance
,”
ASME
Paper No. AJKFluids2015-33499.10.1115/AJKFluids2015-33499
7.
Gan
,
X.
,
Pei
,
J.
,
Wang
,
W.
,
Yuan
,
S.
, and
Tang
,
Y.
,
2020
, “
Multi-Component Optimization of a Vertical Inline Pump Based on Multi-Objective Pso and Artificial Neural Network
,”
J. Mech. Sci. Technol.
,
34
(
12
), pp.
4883
4896
.10.1007/s12206-020-2101-4
8.
Gan
,
X.
,
Pavesi
,
G.
,
Pei
,
J.
,
Yuan
,
S.
,
Wang
,
W.
, and
Yin
,
T.
,
2022
, “
Parametric Investigation and Energy Efficiency Optimization of the Curved Inlet Pipe With Induced Vane of an Inline Pump
,”
Energy
,
240
, p.
122824
.10.1016/j.energy.2021.122824
9.
Stephen
,
C.
,
Yuan
,
S.
,
Pei
,
J.
, and
Cheng G
,
X.
,
2018
, “
Numerical Flow Prediction in Inlet Pipe of Vertical Inline Pump
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
051201
.10.1115/1.4038533
10.
Pei
,
J.
,
Gan
,
X.
,
Wang
,
W.
,
Yuan
,
S.
, and
Tang
,
Y.
,
2019
, “
Multi-Objective Shape Optimization on the Inlet Pipe of a Vertical Inline Pump
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061108
.10.1115/1.4043056
11.
Cheng
,
L.
, Liu, C., Xie, W., Tang, F., and Zhou, J.,
2002
, “
Study on Numerical Optimization of Inlet Channel of Elbow Elbow Pipe in Large Pumping Station
,”
Drain. Irrig. Mach.
,
20
(
6
), pp.
19
22
.10.3969/j.issn.1674-8530.2002.06.007
12.
Dong
,
L.
,
2013
,
Standardization Study of Elbow Inlet Channels in Large and Medium Pumping Stations
, Master's thesis,
Yangzhou University
, China.
13.
Huang
,
Q.
,
Qin
,
D.
, and
Pan
,
G.
,
2022
, “
Numerical Simulation of the Wake Dynamics of the Pumpjet Propulsor in Oblique Inflow
,”
Phys. Fluids
,
34
(
6
), p.
065103
.10.1063/5.0091408
14.
ANSI/HI
,
1998
, “
American National Standard for Pump Intake Design
,”.
15.
GB50265-2010
,
2010
, “
Design Specification for Pumping Station
,”.
16.
Ferreira
,
R. N.
,
da Rosa
,
L. M.
, and
Janzen
,
J. G.
,
2020
, “
Effect of 90° Elbows on Pump Inlet Flow Conditions
,”
Appl. Water Sci.
,
10
(
7
), p.
169
.10.1007/s13201-020-01255-7
17.
Tan
,
L.
,
Cao
,
S.
, and
Gui
,
S.
,
2010
, “
Hydraulic Design and Pre-Whirl Regulation Law of Inlet Guide Vane for Centrifugal Pump
,”
Sci. China Technol. Sci.
,
53
(
8
), pp.
2142
2151
.10.1007/s11431-010-4005-5
18.
Li
,
Y.-J.
, and
Wang
,
F.-J.
,
2007
, “
Numerical Investigation of Performance of an Axial-Flow Pump With Inducer
,”
J. Hydrodyn.
,
19
(
6
), pp.
705
711
.10.1016/S1001-6058(08)60007-4
19.
Shim
,
H.-S.
,
Kim
,
K.-Y.
, and
Choi
,
Y.-S.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091202
.10.1115/1.4039511
20.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
21.
Chaware
,
P.
, and
Sewatkar
,
C. M.
,
2019
, “
Flow Transitions for Flow Through a Pipe With a Twisted Tape Insert
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111110
.10.1115/1.4043557
22.
Patra
,
S. K.
,
Roul
,
M. K.
,
Satapathy
,
P. K.
, and
Barik
,
A. K.
,
2021
, “
Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091401
.10.1115/1.4050962
23.
Warda
,
H. A.
,
Wahba
,
E. M.
, and
Ahmed
,
E. N.
,
2020
, “
On the Hydraulics of Downward Sloping Pipes With Entrapped Air Pockets
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
014503
.10.1115/1.4044650
24.
Roy Biswas
,
T.
,
Dey
,
S.
, and
Sen
,
D.
,
2021
, “
Undular Hydraulic Jumps: Critical Analysis of 2D RANS-VOF Simulations
,”
J. Hydraulic Eng.
,
147
(
11
), p.
06021017
.10.1061/(ASCE)HY.1943-7900.0001939
25.
Li
,
Z.
,
Liu
,
Z.
,
Wang
,
H.
,
Chen
,
Y.
,
Li
,
L.
,
Wang
,
Z.
, and
Zhang
,
D.
,
2022
, “
Investigation of Aerator Flow Pressure Fluctuation Using Detached Eddy Simulation With VOF Method
,”
J. Hydraulic Eng.
,
148
(
1
), p.
04021052
.10.1061/(ASCE)HY.1943-7900.0001953
26.
Karmakar
,
A.
, and
Saha
,
A. K.
,
2020
, “
Unsteady Flow Past a Square Cylinder Placed Close to a Free Surface
,”
Phys. Fluids
,
32
(
12
), p.
123610
.10.1063/5.0028101
27.
Kan
,
K.
,
Chen
,
H.
,
Zheng
,
Y.
,
Zhou
,
D.
,
Binama
,
M.
, and
Dai
,
J.
,
2021
, “
Transient Characteristics During Power-Off Process in a Shaft Extension Tubular Pump by Using a Suitable Numerical Model
,”
Renewable Energy
,
164
, pp.
109
121
.10.1016/j.renene.2020.09.001
28.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
29.
Yang, F., Liu, C., Sun, D., Xie, R., and Zhang, L.,
2015
, “
Numerical Investigation of Internal Flow Mechanisms of Siphon Outlet Passage in Pumping System
,”
J. Agric. Mach.
,
46
(
6
), pp.
60
65, 91
.10.6041/j.issn.1000-1298.2015.06.009
30.
Tao
,
H.-G.
,
Chen
,
H.-X.
,
Xie
,
J.-L.
, and
Hu
,
Y.-P.
,
2012
, “
An Alternative Approach to Quantifying Fluid Flow Uniformity Based on Area-Weighted Average Velocity and Mass-Weighted Average Velocity
,”
Energy Build.
,
45
, pp.
116
123
.10.1016/j.enbuild.2011.10.056
31.
Wu
,
Q.
,
Jin
,
H.
,
Wang
,
C.
, and
Fan
,
J.
,
2022
, “
Numerical Investigation on the Recovery Process of the Flow Field in a Rotating Duct
,”
Phys. Fluids
,
34
(
2
), p.
025126
.10.1063/5.0082160
32.
Zhang
,
D.
,
Li
,
T.
,
Shi
,
W.
,
Zhang
,
H.
, and
Zhang
,
G.
,
2012
, “
Experimental Investigation of Meridional Velocity and Circulation in Axial-Flow Impeller Outlet
,”
Trans. Chin. Soc. Agric. Eng.
,
28
(
7
), p.
5
.https://www.ingentaconnect.com/content/tcsae/tcsae/2012/00000028/00000007/art00013
33.
Liang
,
J.
,
Lu
,
L.
,
Xu
,
L.
,
Chen
,
W.
, and
Wang
,
G.
,
2012
, “
Influence of Flow Velocity Circulation at Guide Vane Outlet of Axial-Flow Pump on Hydraulic Loss in Outlet Conduit
,”
Trans. Chin. Soc. Agric. Eng.
,
28
(
1
), p.
6
.https://www.ingentaconnect.com/content/tcsae/tcsae/2012/00000028/00000001/art00011
34.
Qiu
,
B.
, and
Yuan
,
W.
,
1991
, “
Study on the Influence of Circulation of Axial Flow Pump Rear Guide Vane Outlet on Pump Efficiency
,”
Pump Technol.
, (3), pp. 21–27.
35.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
36.
Lu
,
R.
,
Zhang
,
H.
,
Li
,
Y.
,
Yuan
,
J.
,
Xu
,
J.
, and
Wang
,
L.
,
2022
, “
The Effect of Bell Mouth Height on the Hydraulic Characteristics of the Two-Way Pumping Station Based on the Parameter Design
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
236
(
7
), pp.
1320
1334
.10.1177/09576509221092280
You do not currently have access to this content.