Abstract

This paper addresses the topic of balanced vane pump simulations for pressure ripple optimization by means of metering grooves at the leading edge of delivery ports. It presents a computational fluid dynamics case study based on a transient three-dimensional model developed using an up-to-date commercial software tool. Special attention is dedicated to gaseous cavitation and the impact of the related modeling choices on predictions. The effect of groove dimensions and interaction with the precompression features of the cam ring of the pump are addressed. Experimental data obtained using a dedicated test rig are presented for comparison with numerical results in terms of delivery pressure ripple and volumetric flowrate. A validation strategy based on tuning of the dynamic cavitation model adopted for simulations is proposed. The results demonstrate the critical importance of gas release modeling for the simulation of porting details in the case of significant aeration effects.

References

1.
Skaistis
,
S.
,
1988
,
Noise Control of Hydraulic Machinery
,
Marcel Dekker
,
New York
.
2.
Edge
,
K.
,
1999
, “
Designing Quieter Hydraulic Systems - Some Recent Development Contributions
,”
Proc. JFPS Int. Symp. Fluid Power
,
1999
(
4
), pp.
3
27
.10.5739/isfp.1999.3
3.
Zanetti-Rocha
,
L.
,
Gerges
,
S. N. Y.
,
Johnston
,
D. N.
, and
Arenas
,
J. P.
,
2013
, “
Rotating Group Design for Vane Pump Flow Ripple Reduction
,”
Int. J. Acoust. Vib.
,
18
(
4
), pp.
192
200
.
4.
Skaistis
,
S.
,
1975
, “
Hydraulic Fluidborne Noise Mechanics
,”
SAE
Paper No. 751179. 10.4271/751179
5.
Shorin
,
V.
, and
Sverbilov
,
V.
,
1993
, “
On the Possibility of Suppressing Self-Excited Oscillations of Relief and Check Valves by Actions on Pipeline Performance
,”
Proc. JFPS Int. Symp. Fluid Power
,
1993
(
2
), pp.
465
470
.10.5739/isfp.1993.465
6.
Zouani
,
A.
,
Stout
,
J.
,
Hanim
,
S.
,
Gan
,
C.
,
Dziubinschi
,
G.
,
Baldwin
,
W.
, and
Fu
,
Z.
,
2015
, “
NVH Development of the Ford 2.7 L 4V-V6 Turbocharged Engine
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1947
1952
.10.4271/2015-01-2288
7.
Moetakef
,
M.
,
2019
, “
Vane Pump Whining Noise Reduction by Vane Spacing Optimization
,”
SAE
Paper No. 2019-01-0841. 10.4271/2019-01-0841
8.
Zouani
,
A.
, and
Marri
,
V.
,
2019
, “
Optimal Pressure Relief Groove Geometry for Improved NVH Performance of Variable Displacement Oil Pumps
,”
SAE
Paper No. 2019-01-1548. 10.4271/2019-01-1548
9.
Edge
,
K. A.
, and
Lipscombe
,
B. R.
,
1987
, “
The Reduction of Gear Pump Pressure Ripple
,”
Proc. Inst. Mech. Eng., Part B Manage. Eng.
,
201
(
2
), pp.
99
106
.10.1243/PIME_PROC_1987_201_052_02
10.
Watton
,
J. J.
, and
Watkins-Franklin
,
K. L.
,
1990
, “
The Transient Pressure Characteristic of a Positive Displacement Vane Pump
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
204
(
4
), pp.
269
275
.10.1243/PIME_PROC_1990_204_036_02
11.
Edge
,
K. A.
, and
Darling
,
J.
,
1989
, “
The Pumping Dynamics of Swash Plate Piston Pumps
,”
ASME J. Dyn. Sys., Meas., Control
,
111
(
2
), pp.
307
312
.10.1115/1.3153051
12.
Kojima
,
E.
,
Shinada
,
M.
, and
Yoshino
,
T.
,
1984
, “
Characteristics of Fluidborne Noise Generated by Fluid Power Pump: 2nd Report, Pressure Pulsation in Balanced Vane Pump
,”
Bull. JSME
,
27
(
225
), pp.
475
482
.10.1299/jsme1958.27.475
13.
Seet
,
G. G. L.
,
Penny
,
J. E. T.
, and
Foster
,
K.
,
1985
, “
Applications of a Computer Model in the Design and Development of a Quiet Vane Pump
,”
Proc. Inst. Mech. Eng., Part B J. Eng. Manuf.
,
199
(
4
), pp.
247
253
.10.1243/PIME_PROC_1985_199_076_02
14.
Cho
,
M. R.
, and
Han
,
D. C.
,
1998
, “
Vane Tip Detachment in a Positive Displacement Vane Pump
,”
KSME Int. J.
,
12
(
5
), pp.
881
887
.10.1007/BF02945555
15.
Kojima
,
E.
, and
Nagakura
,
H.
,
1982
, “
Characteristics of Fluidborne Noise Generated by Fluid Power Pumps: 1st Report, Mechanism of Generation of Pressure Pulsation in Axial Piston Pump
,”
Bull. JSME
,
25
(
199
), pp.
46
53
.10.1299/jsme1958.25.46
16.
Edge
,
K. A.
, and
Darling
,
J.
,
1986
, “
Cylinder Pressure Transients in Oil Hydraulic Pumps With Sliding Plate Valves
,”
Proc. Inst. Mech. Eng., Part B: Manage. Eng. Manuf.
,
200
(
1
), pp.
45
54
.10.1243/PIME_PROC_1986_200_047_02
17.
Palmberg
,
J. O.
,
1989
, “
Modeling of Flow Ripple From Fluid Power Piston Pumps
,”
Second Bath International Power Workshop
,
University of Bath
,
Bath, UK, Sept., pp. 207-227
.
18.
Duke
,
K. T.
, and
Dransfield
,
P.
,
1976
, “
Improving Gear Pump Relief Groove Design
,”
Proceedings of the 32nd National Conference of Fluid Power
, Oct. 26–28, pp.
449
461
.
19.
Headrick
,
D. C.
, and
King
,
K. R.
,
1980
, “
A Ripple-Free Gear Pump Using Controlled Leakage
,”
SAE Trans.
,
89
, pp.
3172
3178
.https://www.jstor.org/stable/44729910
20.
Ishibashi
,
A.
,
Muta
,
S.
, and
Hoyashita
,
S.
,
1989
, “
Gear Pumps Wit New Release Ports Suitable for Various Running Conditions: Theory for the Release Ports and Some Experimental Results
,”
JSME Int. J. Ser. Vib., Control Eng.
,
32
(
3
), pp.
442
447
.10.1299/jsmec1988.32.442
21.
Dhaubhadel
,
M. N.
,
1996
, “
Review: CFD Applications in the Automotive Industry
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
647
653
.10.1115/1.2835492
22.
Haworth
,
D. C.
,
Maguire
,
J. M.
,
Matthes
,
W. R.
,
Rhein
,
R.
, and
El Tahry
,
S. H.
,
1996
, “
Dynamic Fluid Flow Analysis of Oil Pumps
,”
SAE Trans.
,
105
, pp.
301
320
.https://www.jstor.org/stable/44720748
23.
Moczala
,
M.
, and
Sanz
,
M. M.
,
2008
, “
Unsteady CFD Simulation of a Geared Pump – Industrial Utilization, Constraints and Outlooks
,” NAFEMS Seminar: Simulation Komplexer Strömungsvorgänge (
CFD
), Wiesbaden, Germany, Mar. 10–11.https://www.researchgate.net/publication/281612404_Unsteady_CFD_Simulation_of_a_Geared_Pump_-_Industrial_Utilization_Constraints_and_Outlooks
24.
Mucchi
,
E.
,
Battarra
,
M.
,
Suman
,
A.
,
Pinelli
,
M.
, and
Dalpiaz
,
G.
,
2019
, “
Chapter 13 - Combining Lumped Parameter Modelling and CFD Analysis for the Pressure Ripple Estimation of Tandem Gear Pumps
,”
Positive Displacement Machines
,
I. A.
Sultan
, and
T. H.
Phung
, eds.,
Academic Press
, San Diego, CA, pp.
369
397
.10.1016/B978-0-12-816998-8.00013-3
25.
Corvaglia
,
A.
,
Rundo
,
M.
,
Casoli
,
P.
, and
Lettini
,
A.
,
2021
, “
Evaluation of Tooth Space pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations
,”
Energies
,
14
(
2
), p.
342
.10.3390/en14020342
26.
Ding
,
H.
,
Vesser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
27.
Altare
,
G.
, and
Rundo
,
M.
,
2016
, “
Computational Fluid Dynamics Analysis of Gerotor Lubricating Pumps at High-Speed: Geometric Features Influencing the Filling Capability
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111101
.10.1115/1.4033675
28.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2017
, “
A Modeling Approach to Study the Fluid-Dynamic Forces Acting on the Spool of a Flow Control Valve
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011103
.10.1115/1.4034418
29.
Rundo
,
M.
, and
Altare
,
G.
,
2018
, “
Lumped Parameter and Three-Dimensional Computational Fluid Dynamics Simulation of a Variable Displacement Vane Pump for Engine Lubrication
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061101
.10.1115/1.4038761
30.
Casari
,
N.
,
Fadiga
,
E.
,
Pinelli
,
M.
,
Randi
,
S.
, and
Suman
,
A.
,
2019
, “
Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System
,”
Energies
,
12
(
11
), p.
2186
.10.3390/en12112186
31.
Stuppioni
,
U.
,
Suman
,
A.
,
Pinelli
,
M.
, and
Blum
,
A.
,
2020
, “
Computational Fluid Dynamics Modeling of Gaseous Cavitation in Lubricating Vane Pumps: An Approach Based on Dimensional Analysis
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071206
.10.1115/1.4046480
32.
Guerra
,
D.
,
Polastri
,
M.
,
Battarra
,
M.
,
Suman
,
A.
,
Mucchi
,
E.
, and
Pinelli
,
M.
,
2020
, “
A Design Procedure for Multistage External Gear Pumps
,”
ASME
Paper No. FPMC2020-2797. 10.1115/FPMC2020-2797
33.
Frosina
,
E.
,
Marinaro
,
G.
,
Amoresano
,
A.
, and
Senatore
,
A.
,
2021
, “
A Numerical and Experimental Methodology to Characterize the Gaseous Cavitation in Spool Valves With U-Notches
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101401
.10.1115/1.4050849
34.
Dickinson
,
A. L.
,
Edge
,
K. A.
, and
Johnston
,
D. N.
,
1993
, “
Measurement and Prediction of Power Steering Vane Pump Fluidborne Noise
,”
SAE
Paper No. 931294.10.4271/931294
35.
Giuffrida
,
A.
, and
Lanzafame
,
R.
,
2005
, “
Cam Shape and Theoretical Flow Rate in Balanced Vane Pumps
,”
Mech. Mach. Theory
,
40
(
3
), pp.
353
369
.10.1016/j.mechmachtheory.2004.07.008
36.
Battarra
,
M.
,
Blum
,
A.
, and
Mucchi
,
E.
,
2019
, “
Kinematics of a Balanced Vane Pump With Circular Tip Vanes
,”
Mech. Mach. Theory
,
137
, pp.
355
373
.10.1016/j.mechmachtheory.2019.03.034
37.
Manring
,
N. D.
, and
Fales
,
R. C.
,
2020
,
Hydraulic Control Systems
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
38.
Flucon Fluid Control GmbH
, 2022, “
Measuring Principle of the CGS
,” Flucon Fluid Control GmbH, Osterode am Harz, Germany, accessed Jan. 11, 2022, https://flucon.de/en/fluid-lexicon/measuring-principle-of-the-cgs
39.
Simerics Inc.
,
2020
,
Manual V5.1
,
Simerics Inc.
,
Bellevue, WA
.
40.
Rundo
,
M.
,
Squarcini
,
R.
, and
Furno
,
F.
,
2018
, “
Modelling of a Variable Displacement Lubricating Pump With Air Dissolution Dynamics
,”
SAE Int. J. Engines
,
11
(
2
), pp.
111
126
.10.4271/03-11-02-0008
41.
Kulite Semiconductor Products Inc., 2022, “
Ruggedized Automotive Pressure Transducers. XTL-123E-190 (M) SERIES
,” Kulite Semiconductor Products Inc., Leonia, NJ, accessed Jan. 3, 2022, http://www.kulitesensors.com.cn/pdf_Data_Sheets/XTL-123E-190.pdf
42.
KRAL GmbH, 2022,
Flow Measurement
,” KRAL GmbH, Lustenau, Austria, accessed Aug. 21, 2022, https://www.kral.at/fileadmin/data/files/products/KRAL_Flowmeters_Display_and_Processing_Unit_01.pdf
43.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.