Abstract

The variation of blade wake characteristics under the influence of upstream transitional flow has not been thoroughly studied, since few control volumes in experimental investigations capture both the blade surface transitional flow and the downstream wake. In this study, instantaneous flow fields in the near-blade and the near-wake region of a compressor cascade at various incidences (i = 0 deg, 2.5 deg, 5 deg, 7.5 deg, and 10 deg) were investigated using particle image velocimetry (PIV). The mean and fluctuating near-wake fields of the compressor blade at Rec = 24,000 were analyzed considering the upstream blade surface laminar separation bubble (LSB) types. The suction-side flow topology shifts at a critical incidence angle of 5 deg from laminar separation without reattachment (i < 5 deg) into a LSB near the trailing edge (i = 5 deg) and an LSB which is advancing to the leading edge (i > 5 deg). The laminar separation vortices retain sufficient strength and coherence to interact with the wake at the low incidence angles (LIA cases, i ≤ 5 deg) but lose coherence beyond the reattachment point at the high incidence angles (HIA cases, i > 5 deg). Self-similarity of the asymmetrical wakes under the influence of various LSB types was established. Near field evolution of wake width, wake decay rate, and flow fluctuations are directly correlated with the LSB type. An optimal incidence exists for the minimum overall flow fluctuation with a delayed separation and alleviated vortical interactions when the LSB locates at the trailing edge.

References

1.
Cadieux
,
F.
,
Domaradzki
,
J. A.
,
Sayadi
,
T.
, and
Bose
,
S.
,
2014
, “
Direct Numerical Simulation and Large Eddy Simulation of Laminar Separation Bubbles at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060902
.10.1115/1.4023787
2.
Snelling
,
A. M.
,
Saville
,
T.
,
Stevens
,
D.
, and
Beggs
,
C. B.
,
2011
, “
Comparative Evaluation of the Hygienic Efficacy of an Ultra‐Rapid Hand Dryer versus Conventional Warm Air Hand Dryers
,”
J. Appl. Microbiol.
,
110
(
1
), pp.
19
26
.10.1111/j.1365-2672.2010.04838.x
3.
Tank
,
J.
,
Klose
,
B.
,
Jacobs
,
G.
, and
Spedding
,
G.
,
2021
, “
Flow Transitions on a Cambered Airfoil at Moderate Reynolds Number
,”
Phys. Fluids
,
33
(
9
), p.
093105
.10.1063/5.0061939
4.
Liu
,
Q.
,
Ager
,
W.
,
Hall
,
C.
, and
Wheeler
,
A. P.
,
2022
, “
Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101008
.10.1115/1.4054148
5.
Mueller
,
T. J.
, and
DeLaurier
,
J. D.
,
2003
, “
Aerodynamics of Small Vehicles
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
89
111
.10.1146/annurev.fluid.35.101101.161102
6.
Horton
,
H. P.
,
1968
, “
Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow
,” Ph.D. thesis,
Queen Mary College
, London.
7.
Nakayama
,
A.
, and
Kreplin
,
H. P.
,
1994
, “
Characteristics of Asymmetric Turbulent Near Wakes
,”
Phys. Fluids
,
6
(
7
), pp.
2430
2439
.10.1063/1.868190
8.
Wang
,
M.
,
Lu
,
X. G.
,
Yang
,
C.
,
Zhao
,
S.
, and
Zhang
,
Y.
,
2021
, “
Numerical Investigation of Distributed Roughness Effects on Separated Flow Transition Over a Highly Loaded Compressor Blade
,”
Phys. Fluids
,
33
(
11
), p.
114104
.10.1063/5.0066615
9.
Stieger
,
R.
, and
Hodson
,
H.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.10.1115/1.1811094
10.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2017
, “
Wind Tunnel Study of the Wind Turbine Interaction With a Boundary-Layer Flow: Upwind Region, Turbine Performance, and Wake Region
,”
Phys. Fluids
,
29
(
6
), p.
065105
.10.1063/1.4984078
11.
Dong
,
Y.
, and
Cumpsty
,
N.
,
1990
, “
Compressor Blade Boundary Layers: Part 2—Measurements With Incident Wakes
,”
ASME J. Turbomach.
,
112
(
2
), pp.
231
240
.10.1115/1.2927637
12.
Chevray
,
R.
, and
Kovasznay
,
L. S.
,
1969
, “
Turbulence Measurements in the Wake of a Thin Flat Plate
,”
AIAA J.
,
7
(
8
), pp.
1641
1643
.10.2514/3.5461
13.
Raj
,
R.
, and
Lakshminarayana
,
B.
,
1973
, “
Characteristics of the Wake Behind a Cascade of Airfoils
,”
J. Fluid Mech.
,
61
(
4
), pp.
707
730
.10.1017/S002211207300090X
14.
Kim
,
D.-H.
,
Chang
,
J.-W.
,
Kim
,
H.-B.
, and
Sohn
,
M.-H.
,
2010
, “
Upstream Condition Effects on the Evolution of Symmetric and Asymmetric Near-Wakes of a Flat Plate
,”
Aerosp. Sci. Technol.
,
14
(
1
), pp.
49
55
.10.1016/j.ast.2009.11.002
15.
Momayez
,
L.
,
Dghim
,
M.
,
Ferchichi
,
M.
, and
Graveline
,
S.
,
2015
, “
Near Field Development of Planar Wakes Under the Effect of Asymmetric Initial Conditions
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091201
.10.1115/1.4030342
16.
Porteiro
,
J.
, and
Perez-Villar
,
V.
,
1996
, “
Wake Development in Turbulent Subsonic Axisymmetric Flows
,”
Exp. Fluids
,
21
(
3
), pp.
145
150
.10.1007/BF00191685
17.
Porteiro
,
J.
,
Przirembel
,
C.
, and
Page
,
R.
,
1983
, “
Modification of Subsonic Wakes Using Boundary Layer and Base Mass Transfer
,”
AIAA J.
,
21
(
5
), pp.
665
670
.10.2514/3.8131
18.
Andreopoulos
,
J.
, and
Bradshaw
,
P.
,
1980
, “
Measurements of Interacting Turbulent Shear Layers in the Near Wake of a Flat Plate
,”
J. Fluid Mech.
,
100
(
3
), pp.
639
668
.10.1017/S0022112080001322
19.
Ziadé
,
P.
,
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2018
, “
Shear Layer Development, Separation, and Stability Over a Low-Reynolds Number Airfoil
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071201
.10.1115/1.4039233
20.
Lambert
,
A.
, and
Yarusevych
,
S.
,
2019
, “
Effect of Angle of Attack on Vortex Dynamics in Laminar Separation Bubbles
,”
Phys. Fluids
,
31
(
6
), p.
064105
.10.1063/1.5100158
21.
Genç
,
M. S.
,
Karasu
,
İ.
, and
Hakan Açıkel
,
H.
,
2012
, “
An Experimental Study on Aerodynamics of NACA2415 Aerofoil at Low Re Numbers
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
252
264
.10.1016/j.expthermflusci.2012.01.029
22.
Anand
,
K.
, and
Sarkar
,
S.
,
2016
, “
Features of a Laminar Separated Boundary Layer Near the Leading-Edge of a Model Airfoil for Different Angles of Attack: An Experimental Study
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021201
.10.1115/1.4034606
23.
Zou
,
T.
, and
Lee
,
C.
,
2021
, “
The Effect of the Wake on the Separated Boundary Layer in a Two-Stage Compressor
,”
Phys. Fluids
,
33
(
3
), p.
034125
.10.1063/5.0045922
24.
Ruan
,
X.
,
Zhang
,
X.
,
Wang
,
P.
,
Liu
,
W.
,
Hu
,
L.
, and
Xu
,
Z.
,
2020
, “
Investigation on the Boundary Layer Transition With the Effects of Periodic Passing Wakes
,”
Phys. Fluids
,
32
(
12
), p.
125113
.10.1063/5.0030791
25.
Shi
,
L.
,
Ma
,
H.
, and
Yu
,
X.
,
2020
, “
POD Analysis of the Unsteady Behavior of Blade Wake Under the Influence of Laminar Separation Vortex Shedding in a Compressor Cascade
,”
Aerosp. Sci. Technol.
,
105
, p.
106056
.10.1016/j.ast.2020.106056
26.
Lopes
,
R.
,
Eça
,
L.
, and
Vaz
,
G.
,
2020
, “
On the Numerical Behavior of RANS-Based Transition Models
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051503
.10.1115/1.4045576
27.
Dong
,
H.
,
Xia
,
T.
,
Chen
,
L.
,
Liu
,
S.
,
Cui
,
Y.
,
Khoo
,
B.
, and
Zhao
,
A.
,
2019
, “
Study on Flow Separation and Transition of the Airfoil in Low Reynolds Number
,”
Phys. Fluids
,
31
(
10
), p.
103601
.10.1063/1.5118736
28.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
2013
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin.
29.
Huang
,
H.
,
Dabiri
,
D.
, and
Gharib
,
M.
,
1997
, “
On Errors of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1427
1440
.10.1088/0957-0233/8/12/007
30.
Hah
,
C.
, and
Lakshminarayana
,
B.
,
1980
, “
Prediction of Two- and Three-Dimensional Asymmetrical Turbulent Wakes, Including Curvature and Rotation Effects
,”
AIAA J.
,
18
(
10
), pp.
1196
1204
.10.2514/3.50871
31.
Legrand
,
M.
,
Nogueira
,
J.
,
Tachibana
,
S.
,
Lecuona
,
A.
, and
Nauri
,
S.
,
2011
, “
Flow Temporal Reconstruction From Non Time-Resolved Data Part II: Practical Implementation, Methodology Validation, and Applications
,”
Exp. Fluids
,
51
(
4
), pp.
861
870
.10.1007/s00348-011-1113-3
32.
Legrand
,
M.
,
Nogueira
,
J.
, and
Lecuona
,
A.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data Part I: Mathematic Fundamentals
,”
Exp. Fluids
,
51
(
4
), pp.
1047
1055
.10.1007/s00348-011-1111-5
33.
Reynolds
,
W.
, and
Hussain
,
A.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.10.1017/S0022112072000679
34.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
35.
Ducoin
,
A.
,
Loiseau
,
J. C.
, and
Robinet
,
J. C.
,
2016
, “
Numerical Investigation of the Interaction Between Laminar to Turbulent Transition and the Wake of an Airfoil
,”
Eur. J. Mech., B: Fluids
,
57
, pp.
231
248
.10.1016/j.euromechflu.2016.01.005
36.
Ravindranath
,
A.
, and
Lakshminarayana
,
B.
,
1981
, “
Structure and Decay Characteristics of Turbulence in the Near and Far-Wake of a Moderately Loaded Compressor Rotor-Blade
,”
ASME J. Eng. Power
,
103
(
1
), pp.
131
140
.10.1115/1.3230684
You do not currently have access to this content.