Abstract

A hydraulic jump is a stationary transition from an upstream supercritical to a downstream subcritical flow. Hydraulic jumps with relatively low Froude numbers may be observed downstream of low-head hydraulic structures and their flow properties have not been not well documented. In this study, the hydraulic properties were investigated experimentally in weak hydraulic jumps with an inflow Froude number Fr1 = 2.1 and inflow depths 0.012 m < d1 < 0.130 m. Three novel features of the study were (1) the very wide range of inflow length scales tested systematically, (2) the relatively high Reynolds number Re = 3.05 × 105 achieved in the largest experiment, with the Reynolds number defined as Re = ρ × V1 × d1/μ, and (3) the broad range of inflow conditions. Although no air entrainment was observed at the lowest Reynolds numbers, some distinct air–water flow patterns were observed in the roller region, generally similar to those observed at higher Froude numbers. The ratio of downstream to upstream depths followed closely the analytical solution of the momentum principle irrespective of the inflow depth. On the other hand, noticeable scaling issues were observed in terms of the dimensionless roller length, length of air–water flow region, roller toe fluctuation frequency, and rate of air entrainment, with increasing dimensionless data with increasing inflow depths, hence Reynolds numbers. The present results have some practical implication in terms of physical modeling and upscaling of results for low-head hydraulic structures, including culverts and storm waterways, which typically operate with Reynolds numbers in excess of 105.

References

1.
Bakhmeteff
,
B. A.
, and
Matzke
,
A. E.
,
1936
, “
The Hydraulic Jump in Terms of Dynamic Similarity
,”
Trans., ASCE
,
101
(
1
), pp.
630
647
.10.1061/TACEAT.0004708
2.
Bidone
,
G.
,
1819
, “
Le Remou et Sur la Propagation Des Ondes. (‘The Jump and on the Wave Propagation.’)
,” Report to Académie Royale des Sciences de Turin, séance 12 Dec., Vol. XXV, pp.
21
112
(in French).
3.
Hager
,
W. H.
,
1992
,
Energy Dissipators and Hydraulic Jump
, Vol.
8
,
Kluwer Academic Publ., Water Science and Technology Library
,
Dordrecht, The Netherlands
, p.
288
..
4.
Ryabenko
,
A. A.
,
1990
, “
Conditions Favorable to the Existence of an Undulating Jump
,”
Gidrotekh. Stroit.
,
24
(
12
), pp.
762
34
(in Russian).10.1007/BF01434602
5.
Bakhmeteff
,
B. A.
,
1932
,
Hydraulics of Open Channels
, 1st ed.,
McGraw-Hill
,
New York
, p.
329
.
6.
Henderson
,
F. M.
,
1966
,
Open Channel Flow
,
MacMillan Company
,
New York
.
7.
Chow
,
V. T.
,
1973
,
Open Channel Hydraulics
,
McGraw-Hill International
,
New York
.
8.
Bélanger
,
J. B.
,
1841
, “
Notes Sur L'Hydraulique. (‘Notes on Hydraulic Engineering.’).
Ecole Royale Des Ponts et Chaussées
,
Paris, France
, p.
223
pages (in French).
9.
Lennon
,
J. M.
, and
Hill
,
D. F.
,
2006
, “
Particle Image Velocimetry Measurements of Undular and Hydraulic Jumps
,”
J. Hydraul. Eng., ASCE
,
132
(
12
), pp.
1283
1294
.10.1061/(ASCE)0733-9429(2006)132:12(1283)
10.
Misra
,
S. K.
,
Thomas
,
M.
,
Kambhamettu
,
C.
,
Kirby
,
J. T.
,
Veron
,
F.
, and
Brocchini
,
M.
,
2006
, “
Estimation of Complex Air–Water Interfaces From Particle Image Velocimetry Images
,”
Exp. Fluids
,
40
(
5
), pp.
764
775
.10.1007/s00348-006-0113-1
11.
Murzyn
,
F.
,
Mouaze
,
D.
, and
Chaplin
,
J. R.
,
2007
, “
Air-Water Interface Dynamic and Free Surface Features in Hydraulic Jumps
,”
J. Hydraulic Res., IAHR
,
45
(
5
), pp.
679
685
.10.1080/00221686.2007.9521804
12.
Chachereau
,
Y.
, and
Chanson
,
H.
,
2011
, “
Bubbly Flow Measurements in Hydraulic Jumps With Small Inflow Froude Numbers
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
555
564
.10.1016/j.ijmultiphaseflow.2011.03.012
13.
Mignot
,
E.
, and
Cienfuegos
,
R.
,
2011
, “
Spatial Evolution of Turbulence Characteristics in Weak Hydraulic Jumps
,”
J. Hydraul. Res., IAHR
,
49
(
2
), pp.
222
230
.10.1080/00221686.2011.554208
14.
Lin
,
C.
,
Hsieh
,
S. C.
,
Lin
,
I. J.
,
Chang
,
K. A.
, and
Raikar
,
R. V.
,
2012
, “
Flow Property and Self-Similarity in Steady Hydraulic Jumps
,”
Exp. Fluids
,
53
(
5
), pp.
1591
1616
.10.1007/s00348-012-1377-2
15.
Montano
,
L.
, and
Felder
,
S.
,
2020
, “
An Experimental Study of Air–Water Flows in Hydraulic Jumps on Flat Slopes
,”
J. Hydraul. Res., IAHR
,
58
(
5
), pp.
767
777
.10.1080/00221686.2019.1671512
16.
Novak
,
P.
, and
Cabelka
,
J.
,
1981
, “
Models in Hydraulic Engineering
,”
Physical Principles and Design Applications
,
Pitman Publication
,
London
, p.
459
.
17.
British Standard
,
1943
,
Flow Measurement
,
British Standard Institution
,
London, Standard No
. Code BS 1042:1943.
18.
Neal
,
L. S.
, and
Bankoff
,
S. G.
,
1963
, “
A High Resolution Resistivity Probe for Determination of Local Void Properties in Gas-Liquid Flows
,”
Am. Inst. Chem. Jl
,
9
, pp.
49
54
.
19.
Jones
,
O. C.
, and
Delhaye
,
J. M.
,
1976
, “
Transient and Statistical Measurement Techniques for two-Phase Flows: A Critical Review
,”
Int. J. Multiphase Flow
,
3
(
2
), pp.
89
116
.10.1016/0301-9322(76)90001-X
20.
Chanson
,
H.
,
2002
, “
Air-Water Flow Measurements With Intrusive Phase-Detection Probes. Can we Improve Their Interpretation?
,”
J. Hydraul. Eng., ASCE
,
128
(
3
), pp.
252
255
.10.1061/(ASCE)0733-9429(2002)128:3(252)
21.
Brocchini
,
M.
, and
Peregrine
,
D. H.
,
2001
, “
The Dynamics of Strong Turbulence at Free Surfaces. Part 1. Description
,”
J. Fluid Mech.
,
449
, pp.
225
254
.10.1017/S0022112001006012
22.
Goodwin
,
R. P.
,
1993
, “
The Hydraulic Jump (Shocks and Viscous Flow in the Kitchen Sink)
,”
Am. J. Phys.
,
61
(
9
), pp.
829
832
.10.1119/1.17413
23.
Aristoff
,
J. M.
,
Leblanc
,
J. D.
,
Hosoi
,
A. E.
, and
Bush
,
J. W. M.
,
2004
, “
Viscous Hydraulic Jumps
,”
Phys. Fluids
,
16
(
9
), pp.
S4
S4
.10.1063/1.1763920
24.
Ervine
,
D. A.
, and
Falvey
,
H. T.
,
1987
, “
Behaviour of Turbulent Water Jets in the Atmosphere and in Plunge Pools
,”
Proc. Inst. Civ. Eng., London
,
83
(
1
), pp.
295
314
.10.1680/iicep.1987.353
25.
Montano
,
L.
,
Li
,
R.
, and
Felder
,
S.
,
2018
, “
Continuous Measurements of Time-Varying Free-Surface Profiles in Aerated Hydraulic Jumps With a LIDAR
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
379
397
.10.1016/j.expthermflusci.2018.01.016
26.
Mouaze
,
D.
,
Murzyn
,
F.
, and
Chaplin
,
J. R.
,
2005
, “
Free Surface Length Scale Estimation in Hydraulic Jumps
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1191
1193
.10.1115/1.2060736
27.
Murzyn
,
F.
, and
Chanson
,
H.
,
2009
, “
Free-Surface Fluctuations in Hydraulic Jumps: Experimental Observations
,”
Exp. Therm. Fluid Sci.
,
33
(
7
), pp.
1055
1064
.10.1016/j.expthermflusci.2009.06.003
28.
Kalinske
,
A. A.
, and
Robertson
,
J. M.
,
1943
, “
Closed Conduit Flow
,”
Trans., ASCE
,
108
(
1
), pp.
1435
1447
.10.1061/TACEAT.0005621
29.
Lubin
,
P.
,
Kimmoun
,
O.
,
Veron
,
F.
, and
Glockner
,
S.
,
2019
, “
Discussion on Instabilities in Breaking Waves: Vortices, Air-Entrainment and Droplet Generation
,”
Eur. J. Mech./B Fluids
,
73
, pp.
144
156
.10.1016/j.euromechflu.2018.05.006
30.
Schröder
,
R.
,
1963
, “
Die Turbulente Strömung im Freien Wechselsprung
,”
Mitteilungen
,
Institut Für Wasserbau Und Wasserwirtschaft, Tech. Univ. Berlin
,
Germany
, No. 59 (in German).
31.
Wang
,
H.
, and
Chanson
,
H.
,
2015
, “
Air Entrainment and Turbulent Fluctuations in Hydraulic Jumps
,”
Urban Water J.
,
12
(
6
), pp.
502
518
.10.1080/1573062X.2013.847464
32.
Chanson
,
H.
,
2009
, “
Development of the Bélanger Equation and Backwater Equation by Jean-Baptiste Bélanger (1828)
,”
J. Hydraul. Eng., ASCE
,
135
(
3
), pp.
159
163
.10.1061/(ASCE)0733-9429(2009)135:3(159)
33.
Hager
,
W. H.
,
Bremen
,
R.
, and
Kawagoshi
,
N.
,
1990
, “
Classical Hydraulic Jump: Length of Roller
,”
J. Hydraul. Res., IAHR
,
28
(
5
), pp.
591
608
.10.1080/00221689009499048
34.
Wang
,
H.
, and
Chanson
,
H.
,
2015b
, “
Experimental Study of Turbulent Fluctuations in Hydraulic Jumps
,”
J. Hydraul. Eng., ASCE
,
141
(
7
), p.
04015010
.10.1061/(ASCE)HY.1943-7900.0001010
35.
Leng
,
X.
, and
Chanson
,
H.
,
2015
, “
Turbulent Advances of a Breaking Bore: Preliminary Physical Experiments
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
70
77
.10.1016/j.expthermflusci.2014.12.002
36.
Chanson
,
H.
,
2010
, “
Convective Transport of Air Bubbles in Strong Hydraulic Jumps
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
798
814
.10.1016/j.ijmultiphaseflow.2010.05.006
37.
Long
,
D.
,
Rajaratnam
,
N.
,
Steffler
,
P. M.
, and
Smy
,
P. R.
,
1991
, “
Structure of Flow in Hydraulic Jumps
,”
J. Hydraul. Res., IAHR
,
29
(
2
), pp.
207
218
.10.1080/00221689109499004
38.
Chanson
,
H.
, and
Gualtieri
,
C.
,
2008
, “
Similitude and Scale Effects of Air Entrainment in Hydraulic Jumps
,”
J. Hydraul. Res., IAHR
,
46
(
1
), pp.
35
44
.10.1080/00221686.2008.9521841
39.
Zhang
,
G.
,
Wang
,
H.
, and
Chanson
,
H.
,
2013
, “
Turbulence and Aeration in Hydraulic Jumps: Free-Surface Fluctuation and Integral Turbulent Scale Measurements
,”
Environ. Fluid Mech.
,
13
(
2
), pp.
189
204
.10.1007/s10652-012-9254-3
40.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2016
, “
A Simplified Model Predicting the Kelvin–Helmholtz Instability Frequency for Laminar Separated Flows
,”
ASME J. Turbomach.
,
138
(
4
), p.
6
.10.1115/1.4032162
41.
Yang
,
Z.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
42.
Rajaratnam
,
N.
,
1962
, “
An Experimental Study of Air Entrainment Characteristics of the Hydraulic Jump
,”
J. Inst. Eng. India
,
42
(
7
), pp.
247
273
.
43.
Chanson
,
H.
, and
Brattberg
,
T.
,
2000
, “
Experimental Study of the Air-Water Shear Flow in a Hydraulic Jump
,”
Int. J. Multiphase Flow
,
26
(
4
), pp.
583
607
.10.1016/S0301-9322(99)00016-6
44.
Murzyn
,
F.
,
Mouaze
,
D.
, and
Chaplin
,
J. R.
,
2005
, “
Optical Fibre Probe Measurements of Bubbly Flow in Hydraulic Jumps
,”
Int. J. Multiphase Flow
,
31
(
1
), pp.
141
154
.10.1016/j.ijmultiphaseflow.2004.09.004
45.
Mossa
,
M.
, and
Tolve
,
U.
,
1998
, “
Flow Visualization in Bubbly Two-Phase Hydraulic Jump
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
160
165
.10.1115/1.2819641
46.
Wang
,
H.
,
2014
, “
Turbulence and Air Entrainment in Hydraulic Jumps
,” Ph.D. thesis,
School of Civil Engineering, The University of Queensland
, Brisbane, Australia, p.
341
.
47.
Valiani
,
A.
,
1997
, “
Linear and Angular Momentum Conservation in Hydraulic Jump
,”
J. Hydraul. Res., IAHR
,
35
(
3
), pp.
323
354
.10.1080/00221689709498416
48.
Wang
,
H.
, and
Chanson
,
H.
,
2018
, “
Estimate of Void Fraction and Air Entrainment Flux in Hydraulic Jump Using Froude Number
,”
Can. J. Civ. Eng.
,
45
(
2
), pp.
105
116
.10.1139/cjce-2016-0279
49.
Rouse
,
H.
,
1938
,
Fluid Mechanics for Hydraulic Engineers
,
McGraw-Hill
,
New York
.
50.
Estrella
,
J.
,
Wüthrich
,
D.
, and
Chanson
,
H.
,
2021
, “
Two-phase Air-water Flow Properties in Hydraulic Jump at Low Froude Number: Scale Effects in Physical Modelling. Hydraulic Model
,” The University of Queensland, Brisbane, Australia, p.
157
, Report No. CH120/21.
You do not currently have access to this content.