Abstract

The surface tension of a self-rewetting fluid (SRF) has a nonmonotonic variation with the increase of temperature, implying potential applications in many industrial fields. In this paper, flow patterns and stability analysis are numerically performed for a gravity-driven self-rewetting fluid film flowing down a heated vertical plane with wall slip. Using the thin film theory, the evolution equation for the interfacial thickness is derived. The discussion is given considering two cases in the review of the temperature difference between the interfacial temperature and the temperature corresponding to the minimum surface tension. The base state of the two-dimensional flow is first obtained, and the influence of the Marangoni effect and slippery effect is analyzed. Then linear stability analysis and related numerical verification are displayed, showing good consistency with each other. For a low interfacial temperature, the Marangoni promotes the fingering instability, and for a high interfacial temperature, the inverse Marangoni impedes the surface instability. The wall slip is found to influence the free surface in a complex way because it can either destabilize or stabilize the flow of the free surface.

References

1.
Kapitza
,
P.
,
1948
, “
Wave Flow of Thin Layers of Viscous Liquid: Part I—Free Flow
,”
J. Exp. Theor. Phys.
,
18
(
1
), pp.
3
28
.https://ui.adsabs.harvard.edu/abs/1948ZhETF..18....3K/abstract
2.
Kapitza
,
P. L.
, and
Kapitza
,
S. P.
,
1949
, “
Wave Flow of Thin Layers of Viscous Liquids. PART III. Experimental Research of a Wave Flow Regime
,”
J. Exp. Theor. Phys.
,
19
(
2
), pp.
105
120
.
3.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.10.1103/RevModPhys.69.931
4.
Craster
,
R. V.
, and
Matar
,
O. K.
,
2009
, “
Dynamics and Stability of Thin Liquid Films
,”
Rev. Mod. Phys.
,
81
(
3
), pp.
1131
1198
.10.1103/RevModPhys.81.1131
5.
Takagi
,
D.
, and
Huppert
,
H. E.
,
2010
, “
Flow and Instability of Thin Films on a Cylinder and Sphere
,”
J. Fluid Mech.
,
647
, pp.
221
238
.10.1017/S0022112009993818
6.
Liu
,
J.
,
Jiang
,
S.
, and
Duan
,
R.
,
2017
, “
A Discussion on the Validity Domain of the Weighted Residuals Model Including the Marangoni Effect for a Thin Film Flowing Down a Uniformly Heated Plate
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
544
556
.10.1080/19942060.2017.1322148
7.
Wang
,
M.
,
Zhao
,
J.
, and
Duan
,
R.
,
2019
, “
Rivulet Formulation in the Flow of Film Down a Uniformly Heated Vertical Substrate
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
396
416
.10.1080/19942060.2019.1600028
8.
Thiruvengadam
,
M.
,
Armaly
,
B.
, and
Drallmeier
,
J.
,
2009
, “
Shear-Driven Liquid Film in a Duct
,”
Eng. Appl. Comput. Fluid Mech.
,
3
(
4
), pp.
506
513
.10.1080/19942060.2009.11015287
9.
Hu
,
J.
,
Wang
,
B.
, and
Sun
,
D.
,
2016
, “
Numerical Investigation of Viscous Fingering in Hele-Shaw Cell With Spatially Periodic Variation of Depth
,”
Appl. Math. Mech.
,
37
(
1
), pp.
45
58
.10.1007/s10483-016-2017-9
10.
Chen
,
X.
,
Ding
,
Z.
, and
Liu
,
R.
,
2018
, “
Spreading of Annular Droplets on a Horizontal Fiber
,”
Microgravity Sci. Technol.
,
30
(
3
), pp.
143
153
.10.1007/s12217-017-9581-6
11.
Ding
,
Z.
,
Liu
,
R.
,
Wong
,
T. N.
, and
Yang
,
C.
,
2018
, “
Absolute Instability Induced by Marangoni Effect in Thin Liquid Film Flows on Vertical Cylindrical Surfaces
,”
Chem. Eng. Sci.
,
177
, pp.
261
269
.10.1016/j.ces.2017.11.039
12.
Ding
,
Z.
, and
Willis
,
A. P.
,
2019
, “
Relative Periodic Solutions in Conducting Liquid Films Flowing Down Vertical Fibres
,”
J. Fluid Mech.
,
873
, pp.
835
855
.10.1017/jfm.2019.450
13.
Mu
,
K.
,
Li
,
G.
, and
Si
,
T.
,
2020
, “
Instability and Interface Coupling of Coaxial Liquid Jets in a Driving Stream
,”
Phys. Fluids
,
32
(
9
), p.
092107
.10.1063/5.0018279
14.
Abe
,
Y.
,
2006
, “
Self-Rewetting Fluids: Beneficial Aqueous Solutions
,”
Ann. N. Y. Acad. Sci.
,
1077
(
1
), pp.
650
667
.10.1196/annals.1362.026
15.
Savino
,
R.
,
Cecere
,
A.
, and
Di Paola
,
R.
,
2009
, “
Surface Tension-Driven Flow in Wickless Heat Pipes With Self-Rewetting Fluids
,”
Int. J. Heat Fluid Flow
,
30
(
2
), pp.
380
388
.10.1016/j.ijheatfluidflow.2009.01.009
16.
Abe
,
Y.
,
2007
, “
Terrestrial and Microgravity Applications of Self-Rewetting Fluids
,”
Microgravity Sci. Technol.
,
19
(
3–4
), pp.
11
12
.10.1007/BF02915737
17.
Abe
,
Y.
,
Iwasaki
,
A.
, and
Tanaka
,
K.
,
2004
, “
Microgravity Experiments on Phase Change of Self-Rewetting Fluids
,”
Ann. N. Y. Acad. Sci.
,
1027
(
1
), pp.
269
285
.10.1196/annals.1324.022
18.
Boubaker
,
R.
,
Harmand
,
S.
, and
Ouenzerfi
,
S.
,
2019
, “
Effect of Self-Rewetting Fluids on the Liquid/Vapor Phase Change in a Porous Media of Two-Phase Heat Transfer Devices
,”
Int. J. Heat Mass Transfer
,
136
, pp.
655
663
.10.1016/j.ijheatmasstransfer.2019.03.016
19.
Zhou
,
S.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2017
, “
Heat Transfer Characteristics of Evaporating Thin Liquid Film in Closed Microcavity for Self-Rewetting Binary Fluid
,”
Int. J. Heat Mass Transfer
,
108
, pp.
136
145
.10.1016/j.ijheatmasstransfer.2016.12.012
20.
Batson
,
W.
,
Agnon
,
Y.
, and
Oron
,
A.
,
2017
, “
Thermocapillary Modulation of Self-Rewetting Films
,”
J. Fluid Mech.
,
819
, pp.
562
591
.10.1017/jfm.2017.191
21.
Hu
,
Y.
,
Chen
,
S.
,
Huang
,
J.
, and
Song
,
M.
,
2018
, “
Marangoni Effect on Pool Boiling Heat Transfer Enhancement of Self-Rewetting Fluid
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1263
1270
.10.1016/j.ijheatmasstransfer.2018.08.003
22.
Duffy
,
B.
,
Wilson
,
S.
,
Conn
,
J.
, and
Sefiane
,
K.
,
2018
, “
Unsteady Motion of a Long Bubble or Droplet in a Self-Rewetting System
,”
Phys. Rev. Fluids
,
3
(
12
), p.
123603
.10.1103/PhysRevFluids.3.123603
23.
Li
,
P.
, and
Chao
,
Y.
,
2020
, “
Marangoni Instability of Self-Rewetting Films Modulated by Chemical Reactions Flowing Down a Vertical Fibre
,”
Chem. Eng. Sci.
,
227
, p.
115936
.10.1016/j.ces.2020.115936
24.
Tsang
,
S.
,
Wu
,
Z.-H.
,
Lin
,
C.-H.
, and
Sun
,
C.-L.
,
2018
, “
On the Evaporative Spray Cooling With a Self-Rewetting Fluid: Chasing the Heat
,”
Appl. Therm. Eng.
,
132
, pp.
196
208
.10.1016/j.applthermaleng.2017.12.084
25.
Yang
,
Y.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2018
, “
Fluid Flow and Thin-Film Evolution Near the Triple Line During Droplet Evaporation of Self-Rewetting Fluids
,”
Langmuir
,
34
(
13
), pp.
3853
3863
.10.1021/acs.langmuir.8b00170
26.
Liu
,
R.
,
Chen
,
X.
, and
Wang
,
X.
,
2019
, “
Effects of Thermocapillarity on the Dynamics of an Exterior Coating Flow of a Self-Rewetting Fluid
,”
Int. J. Heat Mass Transfer
,
136
, pp.
692
701
.10.1016/j.ijheatmasstransfer.2019.03.049
27.
Dong
,
L.
,
Li
,
X.
, and
Liu
,
R.
,
2020
, “
Effect of Thermocapillary on Absolute and Convective Instability of Film Flow of Self-Rewetting Fluid
,”
Microgravity Sci. Technol.
,
32
(
3
), pp.
415
418
.10.1007/s12217-019-09778-8
28.
Ma
,
C.
, and
Liu
,
J.
,
2021
, “
Thin-Film Evolution and Fingering Instability of Self-Rewetting Films Flowing Down an Inclined Plane
,”
Phys. Fluids
,
33
(
2
), p.
022101
.10.1063/5.0036367
29.
Yu
,
Z.
,
2018
, “
Thermocapillary Instability of Self-Rewetting Films on Vertical Fibers
,”
Phys. Fluids
,
30
(
8
), p.
082104
.10.1063/1.5043482
30.
Ye
,
X.
,
Zhang
,
X.
,
Li
,
M.
, and
Li
,
C.
,
2018
, “
Dynamics of Self-Rewetting Drop on an Inclined Uniformly Heated Substrate
,”
Phys. Fluids
,
30
(
11
), p.
112103
.10.1063/1.5050254
31.
Ye
,
X.
,
Hang
,
X.
,
Li
,
M.
, and
Li
,
C.
,
2018
, “
Thermocapillary Migration Characteristics of Self-Rewetting Drop
,”
Acta Phys. Sin.
,
67
(
18
), p. 184704.10.7498/aps.67.20180660
32.
Pascal
,
J.
,
1999
, “
Linear Stability of Fluid Flow Down a Porous Inclined Plane
,”
J. Phys. D Appl. Phys.
,
32
(
4
), pp.
417
422
.10.1088/0022-3727/32/4/011
33.
Ding
,
Z.
, and
Liu
,
Q.
,
2011
, “
Stability of Liquid Films on a Porous Vertical Cylinder
,”
Phys. Rev. E
,
84
(
4
), p.
046307
.10.1103/PhysRevE.84.046307
34.
Ding
,
Z.
,
Wong
,
T. N.
,
Liu
,
R.
, and
Liu
,
Q.
,
2013
, “
Viscous Liquid Films on a Porous Vertical Cylinder: Dynamics and Stability
,”
Phys. Fluids
,
25
(
6
), p.
064101
.10.1063/1.4808112
35.
Samanta
,
A.
,
Ruyer-Quil
,
C.
, and
Goyeau
,
B.
,
2011
, “
A Falling Film Down a Slippery Inclined Plane
,”
J. Fluid Mech.
,
684
, pp.
353
383
.10.1017/jfm.2011.304
36.
Bhat
,
F. A.
, and
Samanta
,
A.
,
2018
, “
Linear Stability of a Contaminated Fluid Flow Down a Slippery Inclined Plane
,”
Phys. Rev. E
,
98
(
3
), p.
033108
.10.1103/PhysRevE.98.033108
37.
Ding
,
Z.
, and
Wong
,
T. N.
,
2015
, “
Falling Liquid Films on a Slippery Substrate With Marangoni Effects
,”
Int. J. Heat Mass Transfer
,
90
, pp.
689
701
.10.1016/j.ijheatmasstransfer.2015.07.003
38.
Ghosh
,
S.
, and
Usha
,
R.
,
2016
, “
Stability of Viscosity Stratified Flows Down an Incline: Role of Miscibility and Wall Slip
,”
Phys. Fluids
,
28
(
10
), p.
104101
.10.1063/1.4964118
39.
Chao
,
Y.
,
Ding
,
Z.
, and
Liu
,
R.
,
2018
, “
Dynamics of Thin Liquid Films Flowing Down the Uniformly Heated/Cooled Cylinder With Wall Slippage
,”
Chem. Eng. Sci.
,
175
, pp.
354
364
.10.1016/j.ces.2017.10.013
40.
Ellaban
,
E.
,
Pascal
,
J.
, and
D'Alessio
,
S.
,
2017
, “
Instability of a Binary Liquid Film Flowing Down a Slippery Heated Plate
,”
Phys. Fluids
,
29
(
9
), p.
092105
.10.1063/1.4989558
41.
Ma
,
C.
,
Liu
,
J.
,
Xie
,
S.
, and
Liu
,
Y.
,
2020
, “
Contact Line Instability of Gravity Driven Thin Films Flowing Down an Inclined Plane With Wall Slippage
,”
Chem. Eng. Sci.
,
214
, p.
115418
.10.1016/j.ces.2019.115418
42.
Fukagata
,
K.
,
Kasagi
,
N.
, and
Koumoutsakos
,
P.
,
2006
, “
A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces
,”
Phys. Fluids
,
18
(
5
), p.
051703
.10.1063/1.2205307
43.
Busse
,
A.
, and
Sandham
,
N.
,
2012
, “
Influence of an Anisotropic Slip-Length Boundary Condition on Turbulent Channel Flow
,”
Phys. Fluids
,
24
(
5
), p.
055111
.10.1063/1.4719780
44.
Rowin
,
W. A.
, and
Ghaemi
,
S.
,
2019
, “
Streamwise and Spanwise Slip Over a Superhydrophobic Surface
,”
J. Fluid Mech.
,
870
, pp.
1127
1157
.10.1017/jfm.2019.225
45.
Samanta
,
A.
,
2020
, “
Non-Modal Stability Analysis in Viscous Fluid Flows With Slippery Walls
,”
Phys. Fluids
,
32
(
6
), p.
064105
.10.1063/5.0010016
46.
Kalliadasis
,
S.
,
Ruyer-Quil
,
C.
,
Scheid
,
B.
, and
Velarde
,
M. G.
,
2011
,
Falling Liquid Films
, Vol.
176
,
Springer Science & Business Media
, London.
47.
Voronov
,
R. S.
,
Papavassiliou
,
D. V.
, and
Lee
,
L. L.
,
2008
, “
Review of Fluid Slip Over Superhydrophobic Surfaces and Its Dependence on the Contact Angle
,”
Ind. Eng. Chem. Res.
,
47
(
8
), pp.
2455
2477
.10.1021/ie0712941
48.
Kondic
,
L.
,
2003
, “
Instabilities in Gravity Driven Flow of Thin Fluid Films
,”
Siam Rev.
,
45
(
1
), pp.
95
115
.10.1137/S003614450240135
49.
Troian
,
S.
,
Herbolzheimer
,
E.
,
Safran
,
S.
, and
Joanny
,
J.
,
1989
, “
Fingering Instabilities of Driven Spreading Films
,”
EPL (Europhys. Lett.)
,
10
(
1
), pp.
25
30
.10.1209/0295-5075/10/1/005
50.
Lin
,
T. S.
, and
Kondic
,
L.
,
2010
, “
Thin Films Flowing Down Inverted Substrates: Two Dimensional Flow
,”
Phys. Fluids
,
22
(
5
), p.
052105
.10.1063/1.3428753
51.
Lin
,
T. S.
,
Kondic
,
L.
, and
Filippov
,
A.
,
2012
, “
Thin Films Flowing Down Inverted Substrates: Three-Dimensional Flow
,”
Phys. Fluids
,
24
(
2
), p.
022105
.10.1063/1.3682001
52.
Chand Kumawat
,
T.
, and
Tiwari
,
N.
,
2020
, “
Flow and Stability of a Gravity-Driven Thin Film Over a Locally Heated Porous Wall
,”
Phys. Fluids
,
32
(
9
), p.
092106
.10.1063/5.0015469
You do not currently have access to this content.