Abstract
The linear stability of plane Poiseuille flow through a finite-length channel is studied. A weakly divergence-free basis finite element method with streamline upwind Petrov–Galerkin (SUPG) stabilization is used to formulate the weak form of the problem. The linear stability characteristics are studied under three possible inlet–outlet boundary conditions, and the corresponding perturbation kinetic energy transfer mechanisms are investigated. Active transfer of perturbation kinetic energy at the channel inlet and outlet, energy production due to convection and dissipation at the flow bulk provide a new perspective in understanding the distinct stability characteristics of plane Poiseuille flow under various boundary conditions.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Thomas
,
L. H.
, 1953
, “
The Stability of Plane Poiseuille Flow
,” Phys. Rev.
,
91
(4
), pp. 780
–783
.10.1103/PhysRev.91.7802.
Dolph
,
C. L.
, and
Lewis
,
D. C.
, 1958
, “
On the Application of Infinite Systems of Ordinary Differential Equations to Perturbations of Plane Poiseuille Flow
,” Q. Appl. Math.
,
16
(2
), pp. 97
–110
.10.1090/qam/932423.
Orszag
,
S. A.
, 1971
, “
Accurate Solution of the Orr-Sommerfeld Stability Equation
,” J. Fluid Mech.
,
50
(4
), pp. 689
–703
.10.1017/S00221120710028424.
Orr
,
W. M.
, 1907
, “
The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II. A Viscous Liquid
,” Proc. R. Ir. Acad., Sect. A
,
27
, pp. 69
–138
.https://www.jstor.org/stable/204905905.
Synge
,
J. L.
, 1938
, “
The Stability of Plane Poiseuille Motion
,” Proceedings of the Fifth International Congress for Applied Mechanics
, Harvard University and the Massachusetts Institute of Technology, Cambridge, MA,
Wiley
, Sept. 12–16, pp. 326
–332
.http://www.jstor.org/stable/998576.
Fraternale
,
F.
,
Domenicale
,
L.
,
Staffilani
,
G.
, and
Tordella
,
D.
, 2018
, “
Internal Waves in Sheared Flows: Lower Bound of the Vorticity Growth and Propagation Discontinuities in the Parameter Space
,” Phys. Rev. E
,
97
(6
), p. 063102
.10.1103/PhysRevE.97.0631027.
Arnold
,
V. I.
, 1965
, “
Conditions for the Nonlinear Stability of the Stationary Plane Curvilinear Flows of an Ideal Fluid
,” Dokl. Akad. Nauk
,
162
, pp. 975
–978
.10.1007/978-3-642-31031-7_48.
Arnold
,
V. I.
, 1969
, “
On A Priori Estimate in the Theory of Hydrodynamic Stability
,” Am. Math. Soc. Transl.
,
19
, pp. 267
–269
.10.1007/978-3-642-31031-7_69.
Lee
,
H.
, and
Wang
,
S.
, 2019
, “
Extension of Classical Stability Theory to Viscous Planar Wall-Bounded Shear Flows
,” J. Fluid Mech.
,
877
, pp. 1134
–1162
.10.1017/jfm.2019.62910.
Batchelor
,
G. K.
, 1987
, An Introduction to Fluid Dynamics
,
Cambridge University Press
, London, UK.11.
Wang
,
S.
, and
Rusak
,
Z.
, 1997
, “
The Dynamics of a Swirling Flow in a Pipe and Transition to Axisymmetric Vortex Breakdown
,” J. Fluid Mech.
,
340
, pp. 177
–223
.10.1017/S002211209700527212.
Morgulis
,
A.
, and
Yudovich
,
V.
, 2002
, “
Arnold's Method for Asymptotic Stability of Steady Inviscid Incompressible Flow Through a Fixed Domain With Permeable Boundary
,” Chaos
,
12
(2
), pp. 356
–371
.10.1063/1.148044313.
Wei
,
Q.
, 2004
, “
Bounds on Convective Heat Transport in a Rotating Porous Layer
,” Mech. Res. Commun.
,
31
(3
), pp. 269
–276
.10.1016/j.mechrescom.2003.11.00814.
Gallaire
,
F.
, and
Chomaz
,
J.-M.
, 2004
, “
The Role of Boundary Conditions in a Simple Model of Incipient Vortex Breakdown
,” Phys. Fluids
,
16
(2
), pp. 274
–286
.10.1063/1.163032615.
Govorukhin
,
V. N.
, and
Il'in
,
K. I.
, 2009
, “
Numerical Study of an Inviscid Incompressible Fluid Through a Channel of Finite Length
,” Int. J. Numer. Methods Fluids
,
60
(12
), pp. 1315
–1333
.10.1002/fld.193216.
Chai
,
C.
, and
Song
,
B.
, 2019
, “
Stability of Slip Channel Flow Revisited
,” Phys. Fluids
,
31
(8
), p. 084105
.10.1063/1.510880417.
Hughes
,
T. J. R.
, and
Brooks
,
A. N.
, 1979
, “
A Multidimensional Upwind Scheme With No Crosswind Diffusion
,” Finite Element Methods for Convection Dominated Flows, ASME, New York, pp. 19
–35
.18.
Hughes
,
T. J. R.
, and
Brooks
,
A. N.
, 1982
, “
A Theoretical Framework for Petrov-Galerkin Methods With Discontinuous Weighting Functions: Application to the Streamline Upwind Procedure
,” Finite Elements in Fluids, Vol.
4
,
Wiley
, London, UK, pp. 46
–65
.19.
Hughes
,
T. J. R.
, 1987
, “
Recent Progress in the Development and Understanding of SUPG Methods With Special Reference to the Compressible Euler and Navier–Stokes Equations
,” Int. J. Numer. Methods Fluids
,
7
(11
), pp. 1261
–1275
.10.1002/fld.165007110820.
Griffiths
,
D. F.
, 1979
, “
The Construction of Approximately Divergence-Free Finite Element
,” The Mathematics of Finite Elements and Applications III
,
J. R.
Whiteman
, ed., Academic Press, University of Brunel, UK.https://pdf.sciencedirectassets.com/271610/1-s2.0-S0377042700X01069/1-s2.0-0377042793E0257M/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEA0aCXVzLWVhc3QtMSJHMEUCIFN0nbXqYdQrJtXHHoSblBwRk9eN3KWk%2F0A5tEgATKHoAiEAhpU66Tsyu4NE8dah%2BesUj7WXNXD%2F3yKbVIBj7t1wY%Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20211028T133659Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY7YQTB4MZ%2F20211028%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=66ff3872b00205dda938cb53b80ee75d63cf6527223f5744001b09f461a3b73f&hash=b5d3930dab66db58e1d2def869847556a8926d489a91713d7669a3c6a76b31f2&host=5fc6b349-2633-45a2-840c-4fbd2e1f77f0&sid=817cc37a2b7d97436649df85a016823b72a6gxrqb&type=client21.
Griffiths
,
D. F.
, 1981
, “
An Approximately Divergence-Free 9-Node Velocity Element for Incompressible Flows
,” Int. J. Numer. Methods Fluids
,
1
(4
), pp. 323
–346
.10.1002/fld.165001040522.
Fortin
,
M.
, 1981
, “
Old and New Finite Elements for Incompressible Flows
,” Int. J. Numer. Methods Fluids
,
1
(4
), pp. 347
–364
.10.1002/fld.165001040623.
Ye
,
X.
, and
Hall
,
C. A.
, 1997
, “
A Discrete Divergence-Free Basis for Finite Element Methods
,” Numer. Algorithms
,
16
(3
), pp. 365
–380
.10.1023/A:101915970219824.
Babǔska
,
I.
, 1971
, “
Error Bounds for Finite Element Method
,” Numer. Math.
,
16
, pp. 322
–333
.10.1007/BF0216500325.
Brezzi
,
F.
, 1974
, “
On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising From Lagrange Multipliers
,” RAIRO, Anal. Numér.
,
8
(R2
), pp. 129
–151
.10.1051/m2an/197408R20129126.
Boffi
,
D.
,
Brezzi
,
F.
, and
Gastaldi
,
L.
, 1974
, “
On the Convergence of Eigenvalues for Mixed Formulations
,” Ann. Sc. Norm. Super. Pisa, Cl. Sci.
,
25
(1
), pp. 131
–154
.http://eudml.org/doc/8428127.
Hughes
,
T. J. R.
,
Mallet
,
M.
, and
Akira
,
M.
, 1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics: II. Beyond SUPG
,” Comput. Methods Appl. Mech. Eng.
,
54
(3
), pp. 341
–355
.10.1016/0045-7825(86)90110-628.
Lehoucq
,
R. B.
, and
Sorensen
,
D. C.
, 1996
, “
Deflation Techniques for an Implicitly Restarted Arnoldi Iteration
,” SIAM J. Matrix Anal. Appl.
,
17
(4
), pp. 789
–821
.10.1137/S089547989528148429.
Lovadina
,
C.
,
Lyly
,
M.
, and
Stenberg
,
R.
, 2009
, “
A Posteriori Estimates for the Stokes Eigenvalue Problem
,” Numer. Methods Partial Differ. Equations
,
25
(1
), pp. 244
–257
.10.1002/num.2034230.
Wang
,
S.
, and
Rusak
,
Z.
, 2011
, “
Energy Transfer Mechanism of the Instability of an Axisymmetric Swirling Flow in a Finite-Length Pipe
,” J. Fluid Mech.
,
679
, pp. 505
–543
.10.1017/jfm.2011.14331.
Wang
,
S.
,
Rusak
,
Z.
,
Gong
,
R.
, and
Liu
,
F.
, 2016
, “
On the Three-Dimensional Stability of a Solid-Body Rotation Flow in a Finite-Length Rotating Pipe
,” J. Fluid Mech.
,
797
, pp. 284
–321
.10.1017/jfm.2016.22332.
Pralits
,
J. O.
,
Alinovi
,
E.
, and
Bottaro
,
A.
, 2017
, “
Stability of the Flow in a Plane Microchannel With One or Two Superhydrophobic Walls
,” Phys. Rev. Fluids
,
2
(1
), p. 013901
.10.1103/PhysRevFluids.2.013901Copyright © 2022 by ASME
You do not currently have access to this content.