Abstract

The adjoint analysis of plane Poiseuille flow is conducted for both global and convective stability problems. Receptivity and structural sensitivity are analyzed using a stabilized finite element method. In the global stability problem at high Reynolds numbers, the leading adjoint modes exhibit a boundary-layer-like structure at the inlet and near the channel walls. For convective stability problem, receptivity is highest in regions close to the walls similar to the global adjoint modes. Structural separation of direct and adjoint modes indicates high non-normality of the linear operators. Structural sensitivity analysis shows that both the global and convective stability are most sensitive to momentum perturbation near the wall and become increasingly sensitive to near-wall perturbations as Reynolds number increases. Slight variation of wall shape tends to affect the linear stability of plane Poiseuille flow significantly at high Reynolds numbers.

References

1.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Philos. Trans. R. Soc., A
,
174
, pp.
935
982
.10.1098/rstl.1883.0029
2.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.10.1017/S0022112071002842
3.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
), pp.
181
201
.10.1017/S0022112069000115
4.
Kao
,
T. W.
, and
Park
,
C.
,
1970
, “
Experimental Investigations of the Stability of Channel Flows. Part 1. Flow of a Single Liquid in a Rectangular Channel
,”
J. Fluid Mech.
,
43
(
1
), pp.
145
164
.10.1017/S0022112070002288
5.
Carlson
,
D. R.
,
Widnall
,
S. E.
, and
Peeters
,
M. F.
,
1982
, “
A Flow-Visualization Study of Transition in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
121
, pp.
487
505
.10.1017/S0022112082002006
6.
Nishioka
,
M.
, and
Asai
,
M.
,
1985
, “
Some Observations of the Subcritical Transition in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
150
, pp.
441
450
.10.1017/S0022112085000210
7.
Hof
,
B.
,
Juel
,
A.
, and
Mullin
,
T.
,
2003
, “
Scaling of the Turbulence Transition Threshold in a Pipe
,”
Phys. Rev. Lett.
,
91
(
24
), p.
244502
.10.1103/PhysRevLett.91.244502
8.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
,
1993
, “
Hydrodynamic Stability Without Eigenvalues
,”
Science
,
261
(
5121
), pp.
578
584
.10.1126/science.261.5121.578
9.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1993
, “
Pseudospectra of the Orr–Sommerfeld Operator
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
15
47
.10.1137/0153002
10.
Hill
,
D. C.
, A Theoretical Approach for Analyzing the Restabilization of Wakes (NASA Technical Memorandum), National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA.
11.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.10.1017/S0022112007005654
12.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.10.1146/annurev-fluid-010313-141253
13.
Juniper
,
M. P.
,
2011
, “
Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition
,”
J. Fluid Mech.
,
667
, pp.
272
308
.10.1017/S0022112010004453
14.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.10.1017/jfm.2012.639
15.
Spagnoli
,
B.
, and
Airiau
,
C.
,
2008
, “
Adjoint Analysis for Noise Control in a Two-Dimensional Compressible Mixing Layer
,”
Comput. Fluids
,
37
(
4
), pp.
475
486
.10.1016/j.compfluid.2007.02.006
16.
Freund
,
J. B.
,
2011
, “
Adjoint-Based Optimization for Understanding and Suppressing Jet Noise
,”
J. Sound Vib.
,
330
(
17
), pp.
4114
4122
.10.1016/j.jsv.2011.02.009
17.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.10.1146/annurev.fl.22.010190.002353
18.
Davies
,
S. J.
, and
White
,
C. M.
,
1928
, “
An Experimental Study of the Flow of Water in Pipes of Rectangular Section
,”
Proc. R. Soc.London
,
1120
(
781
), pp.
92
107
.10.1098/rspa.1928.0086
19.
Wu
,
X.
,
Moin
,
P.
,
Adrian
,
R. J.
, and
Baltzer
,
J. R.
,
2015
, “
Osborne Reynolds Pipe Flow: Direct Simulation From Laminar Through Gradual Transition to Fully Developed Turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
26
), pp.
7920
7924
.10.1073/pnas.1509451112
20.
Eagles
,
P. M.
,
1966
, “
The Stability of a Family of Jeffery–Hamel Solutions for Divergent Channel Flow
,”
J. Fluid Mech.
,
24
(
1
), pp.
191
207
.10.1017/S0022112066000582
21.
Eagles
,
P. M.
, and
Weissman
,
M. A.
,
1975
, “
On the Stability of Slowly Varying Flow: The Divergent Channel
,”
J. Fluid Mech.
,
69
(
2
), pp.
241
262
.10.1017/S0022112075001425
22.
Xu
,
L.
, and
Rusak
,
Z.
,
2022
, “
The Stability and Perturbation Enstrophy Transfer Mechanism of Flow in a Slightly Divergent Channel
,”
AIAA J.
,
60
(
5
), pp.
3311
3323
.10.2514/1.J060957
23.
Xu
,
L.
, and
Rusak
,
Z.
,
2022
, “
The Stability of Plane Poiseuille Flow in a Finite-Length Channel
,”
ASME. J. Fluids Eng.
,
144
(
5
), p.
051302
.10.1115/1.4052643
24.
Hughes
,
T. J.
,
Mallet
,
M.
, and
Akira
,
M.
,
1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics: II. Beyond SUPG
,”
Comput. Methods Appl. Mech. Eng.
,
54
(
3
), pp.
341
355
.10.1016/0045-7825(86)90110-6
25.
Lehoucq
,
R. B.
, and
Sorensen
,
D. C.
,
1996
, “
Deflation Techniques for an Implicitly Restarted Arnoldi Iteration
,”
SIAM J. Matrix Anal. Appl.
,
17
(
4
), pp.
789
821
.10.1137/S0895479895281484
26.
Deissler
,
R. J.
,
1987
, “
Convective Nature of Instability in Plane Poiseuille Flow
,”
Phys. Fluids
,
30
(
8
), pp.
2303
2305
.10.1063/1.866118
27.
Biau
,
D.
,
Soueid
,
H.
, and
Bottaro
,
A.
,
2008
, “
Transition to Turbulence in Duct Flow
,”
J. Fluid Mech.
,
596
(
4
), pp.
133
142
.10.1017/S0022112007009536
28.
Rowley
,
C. W.
, and
Dawson
,
S. T. M.
,
2017
, “
Model Reduction for Flow Analysis and Control
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
387
417
.10.1146/annurev-fluid-010816-060042
29.
Taira
,
K.
,
Hemati
,
M. S.
,
Brunton
,
S. L.
,
Sun
,
Y.
,
Duraisamy
,
K.
,
Bagheri
,
S.
,
Dawson
,
S. T. M.
, and
Yeh
,
C.-A.
,
2020
, “
Modal Analysis of Fluid Flows: Applications and Outlook
,”
AIAA J.
,
58
(
3
), pp.
998
1022
.10.2514/1.J058462
You do not currently have access to this content.