Abstract

The analysis of the numerical study of underwater high-speed gas jets is presented in this study. This work aims to understand the development of the flow structure of the gas jets submerged in water and assess the performance of the jet in terms of the thrust under varying operating conditions. The behavior of the submerged gas jet is studied under two operating parameters, namely, the pressure ratio (ratio of the pressure of the gas jet at the nozzle exit to ambient pressure) and the depth of water at which the propulsion takes place. The effort utilizes computational fluid dynamics using the finite volume method to solve the unsteady Reynolds‐averaged Navier–Stokes equations in a two-dimensional axisymmetric domain combined with the mixture model for the multiphase flow. The unsteady behavior of different flow variables under varying operating parameters is discussed in detail. Further, the flow physics of a submerged supersonic gas jet is compared with a supersonic gas jet expanded in the air under a similar set of operating parameters. The effects of density difference between the gas and water have been studied from the comparative analysis.

References

1.
Loth
,
E.
, and
Faeth
,
G. M.
,
1989
, “
Structure of Underexpanded Round Air Jets Submerged in Water
,”
Int. J. Multiphase Flow
,
15
(
4
), pp.
589
603
.10.1016/0301-9322(89)90055-4
2.
Dai
,
Z.
,
Wang
,
B.
,
Qi
,
L.
, and
Shi
,
H.
,
2006
, “
Experimental Study on Hydrodynamic Behaviors of High-Speed Gas Jets in Still Water
,”
Acta Mech. Sin.
,
22
(
5
), pp.
443
448
.10.1007/s10409-006-0029-2
3.
Shi
,
H.-H.
,
Guo
,
Q.
,
Wang
,
C.
,
Dong
,
R.-L.
,
Zhang
,
L.-T.
,
Jia
,
H.-X.
,
Wang
,
X.-G.
, and
Wang
,
B.-Y.
,
2010
, “
Oscillation Flow Induced by Underwater Supersonic Gas Jets
,”
Shock Waves
,
20
(
4
), pp.
347
352
.10.1007/s00193-010-0270-2
4.
Tang
,
J.
,
Li
,
S.
,
Wang
,
N.
,
Wei
,
Y.
, and
Shyy
,
W.
,
2010
, “
Flow Structures of Gaseous Jet Injected Into Liquid for Underwater Propulsion
,”
AIAA
Paper No. 2010-6911.10.2514/6.2010-6911
5.
Tang
,
J.-N.
,
Wang
,
N.-F.
, and
Shyy
,
W.
,
2011
, “
Flow Structures of Gaseous Jets Injected Into Water for Underwater Propulsion
,”
Acta Mech. Sin.
,
27
(
4
), pp.
461
472
.10.1007/s10409-011-0474-4
6.
Weiland
,
C.
, and
Vlachos
,
P. P.
,
2013
, “
Round Gas Jets Submerged in Water
,”
Int. J. Multiphase Flow
,
48
, pp.
46
57
.10.1016/j.ijmultiphaseflow.2012.08.002
7.
Miaosheng
,
H.
,
Lizi
,
Q.
, and
Yu
,
L.
,
2015
, “
Oscillation Flow Induced by Underwater Supersonic Gas Jets From a Rectangular Laval Nozzle
,”
Procedia Eng.
,
99
, pp.
1531
1542
.10.1016/j.proeng.2014.12.705
8.
Fronzeo
,
M.
, and
Kinzel
,
M. P.
,
2016
, “
An Investigation of Compressible Gas Jets Submerged Into Water
,”
AIAA
Paper No. 2016-4253.10.2514/6.2016-4253
9.
Fronzeo
,
M. A.
,
Kinzel
,
M.
, and
Lindau
,
J.
,
2017
, “
A Flow Regime Map for Gas Jets
,”
ASME
Paper No. FEDSM2017-69483.10.1115/FEDSM2017-69483
10.
Gong
,
Z.-x.
,
Lu
,
C.-j.
,
Li
,
J.
, and
Cao
,
J.-y.
,
2017
, “
The Gas Jet Behavior in Submerged Laval Nozzle Flow
,”
J. Hydrodyn., Ser. B
,
29
(
6
), pp.
1035
1043
.10.1016/S1001-6058(16)60817-X
11.
Qin
,
S.
,
Liu
,
J.
,
Miao
,
T.
, and
Wu
,
D.
,
2016
, “
Experimental Study on Gas-Liquid Flow Characteristics of Submerged Air Jets
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
129
,
p.
012061
.10.1088/1757-899X/129/1/012061
12.
Bondarchuk
,
S. S.
,
Vorozhtsov
,
A. B.
, and
Obukhov
,
N. A.
,
1999
, “
Ignition Pressure Transient in Solid Rockets Initially Filled With Water
,”
J. Propul. Power
,
15
(
6
), pp.
861
865
.10.2514/2.5508
13.
Linck
,
M.
,
Gupta
,
A. K.
, and
Yu
,
K.
,
2009
, “
Submerged Combustion and Two-Phase Exhaust Jet Instabilities
,”
J. Propul. Power
,
25
(
2
), pp.
522
532
.10.2514/1.35724
14.
Zhang
,
X.
,
Li
,
S.
,
Yang
,
B.
, and
Wang
,
N.
,
2020
, “
Flow Structures of Over-Expanded Supersonic Gaseous Jets for Deep-Water Propulsion
,”
Ocean Eng.
,
213
, p.
107611
.10.1016/j.oceaneng.2020.107611
15.
Yunlong
,
T.
, and
Shipeng
,
L.
,
2019
, “
The Mechanism for the Quasi-Back-Attack Phenomenon of Gas Jets Submerged in Water
,”
Int. J. Aeronaut. Space Sci.
,
20
(
1
), pp.
165
171
.10.1007/s42405-018-00138-1
16.
Elizabeth
,
A. R.
, and
Jayachandran
,
T.
,
2020
, “
Numerical Simulation of Underwater Propulsion Using Compressible Multifluid Formulation
,”
Recent Asian Research on Thermal and Fluid Sciences
,
Springer
, Cham, Switzerland, pp.
641
653
.
17.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow: With Historical Perspective
, Vol.
12
,
McGraw-Hill
,
New York
.
18.
Drew
,
D. A.
, and
Passman
,
S. L.
,
2006
,
Theory of Multicomponent Fluids
, Vol.
135
,
Springer Science & Business Media
, Cham, Switzerland.
19.
Sarkar
,
S.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Kreiss
,
H. O.
,
1991
, “
The Analysis and Modelling of Dilatational Terms in Compressible Turbulence
,”
J. Fluid Mech.
,
227
, pp.
473
493
.10.1017/S0022112091000204
20.
Pope
,
S. B.
, and
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
21.
Venkateswaran
,
S.
,
Lindau
,
J.
,
Kunz
,
R.
, and
Merkle
,
C.
,
2001
, “
Preconditioning Algorithms for the Computation of Multi-Phase Mixture Flows
,”
39th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–11, p.
279
.
22.
Lindau
,
J.
,
Kunz
,
R.
,
Venkateswaran
,
S.
, and
Merkle
,
C.
,
2001
, “
Development of a Fully-Compressible Multi-Phase Reynolds-Averaged Navier-Stokes Model
,”
AIAA
Paper No. 2001-2648.10.2514/6.2001-2648
23.
Darwish
,
M.
, and
Moukalled
,
F.
,
2014
, “
A Fully Coupled Navier-Stokes Solver for Fluid Flow at All Speeds
,”
Numer. Heat Transfer, Part B Fundam.
,
65
(
5
), pp.
410
444
.10.1080/10407790.2013.869102
24.
Karki
,
K.
, and
Patankar
,
S.
,
1989
, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations
,”
AIAA J.
,
27
(
9
), pp.
1167
1174
.10.2514/3.10242
25.
Moukalled
,
F.
, and
Darwish
,
M.
,
2000
, “
A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds
,”
Numer. Heat Transfer Part B Fundam.
,
37
(
1
), pp.
103
139
.10.1080/104077900275576
26.
Skidmore
,
G. M.
,
Lindau
,
J. W.
,
Brungart
,
T. A.
,
Moeny
,
M. J.
, and
Kinzel
,
M. P.
,
2017
, “
Finite Volume, Computational Fluid Dynamics-Based Investigation of Supercavity Pulsations
,”
ASME J. Fluids Eng.
,
139
(
9
), p. 091301.10.1115/1.4036596
27.
Ma
,
G.
,
Chen
,
F.
,
Yu
,
J.
,
Song
,
Y.
, and
Mu
,
Z.
,
2018
, “
Effect of Pressure-Equalizing Film on Hydrodynamic Characteristics and Trajectory Stability of an Underwater Vehicle With Injection Through One or Two Rows of Venting Holes
,”
ASME J. Fluids Eng.
,
140
(
9
), p. 091103.10.1115/1.4039519
28.
Ma
,
G.
,
Chen
,
F.
,
Yu
,
J.
, and
Wang
,
K.
,
2019
, “
Numerical Investigation of Trajectory and Attitude Robustness of an Underwater Vehicle Considering the Uncertainty of Platform Velocity and Yaw Angle
,”
ASME J. Fluids Eng.
,
141
(
2
), 021106.10.1115/1.4040930
29.
Chen
,
Z.
, and
Przekwas
,
A.
,
2010
, “
A Coupled Pressure-Based Computational Method for Incompressible/Compressible Flows
,”
J. Comput. Phys.
,
229
(
24
), pp.
9150
9165
.10.1016/j.jcp.2010.08.029
30.
Denner
,
F.
,
2018
, “
Fully-Coupled Pressure-Based Algorithm for Compressible Flows: Linearisation and Iterative Solution Strategies
,”
Comput. Fluids
,
175
, pp.
53
65
.10.1016/j.compfluid.2018.07.005
31.
Metacomp Technologies Inc.,
2019
, “
CFD++ Users Manual
,” 1st ed.,
Metacomp Technologies
, Westlake Village, CA.
32.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
, “
The Finite Volume Method
,”
In the Finite Volume Method in Computational Fluid Dynamics
,
Springer
, Cham, Switzerland, pp.
103
135
.
33.
Rhie
,
C. M.
, and
Chow
,
W.-L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
34.
Franquet
,
E.
,
Perrier
,
V.
,
Gibout
,
S.
, and
Bruel
,
P.
,
2015
, “
Free Underexpanded Jets in a Quiescent Medium: A Review
,”
Prog. Aerosp. Sci.
,
77
, pp.
25
53
.10.1016/j.paerosci.2015.06.006
35.
Adamson
,
T. C.
, Jr
,., and
Nicholls
,
J. A.
,
1959
, “
On the Structure of Jets From Highly Underexpanded Nozzles Into Still Air
,”
J. Aerosp. Sci.
,
26
(
1
), pp.
16
24
.10.2514/8.7912
You do not currently have access to this content.