Abstract

Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are conducted in a coaxial swirling jet. Two distinct types of recirculation zones (RZ) relevant to coaxial swirling jets are considered based on the modified Rossby numberRom, which is known to represent the ratio of axial velocity deficit between two coaxial streams to the characteristic tangential velocity at the nozzle exit. The two flow states studied are Rom>1 and Rom1. The former is characterized by regions of high strain (especially in the shear layer between central and coaxial jet). It is found in this study that renormalization group (RNG)kɛ model is the suitable model for 3D URANS simulation of Rom>1 flow state. This is attributed to the model's ability to simulate flow regions that are heavily strained. The simulated results are compared with two-dimensional laser Doppler velocimetry measurements conducted as part of this study. For the flow states Rom1, which are characterized by the dominance of radial pressure gradient arising due to rotational (swirling) effect over the pressure gradient due to axial velocity deficit, the Reynolds stress model (RSM) is found best to simulate the flow topologies and mean and turbulent quantities. The time-averaged results obtained from optimized turbulent models are employed to gain insights into the fluid mixing phenomenon in these RZs. The unsteady axial velocity fluctuations obtained from both experiments and URANS simulations are analyzed in the frequency domain to gain insights into dominant axial oscillations prevalent in RZs.

References

1.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
UK
.
2.
Ribeiro
,
M. M.
, and
Whitelaw
,
J. H.
,
1980
, “
Coaxial Jets With and Without Swirl
,”
J. Fluid Mech.
,
96
(
04
), pp.
769
795
.10.1017/S0022112080002352
3.
Escudier
,
M. P.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow-a Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
4.
Thumuluru
,
S. K.
, and
Lieuwen
,
T.
,
2009
, “
Characterization of Acoustically Forced Swirl Flame Dynamics
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2893
2900
.10.1016/j.proci.2008.05.037
5.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
et al.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.10.1080/00102202.2014.882916
6.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Shreekrishna
,
Lieuwen
,
T.
, and
Connor
,
J. O.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.10.1080/00102202.2010.537288
7.
Malanoski
,
M.
,
Aguilar
,
M.
,
Shin
,
D. H.
, and
Lieuwen
,
T.
,
2014
, “
Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame
,”
Combust. Sci. Technol.
,
186
(
12
), pp.
1816
1843
.10.1080/00102202.2014.923410
8.
Loiseleux
,
T.
, and
Chomaz
,
J. M.
,
2003
, “
Breaking of Rotational Symmetry in a Swirling Jet Experiment
,”
Phys. Fluids
,
15
,
15
(
2
), pp.
511
523
.10.1063/1.1533068
9.
Vanierschot
,
M.
,
Muller
,
J.
,
Sieber
,
M.
,
Percin
,
M.
,
Van Oudheusden
,
B.
, and
Oberleithner
,
K.
,
2020
, “
Single- and Double-Helix Vortex Breakdown as Two Dominant Global Modes in Turbulent Swirling Jet Flow
,”
J. Fluid Mech.
,
883
(A31).10.1017/jfm.2019.872
10.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
11.
Zhang
,
Y.
, and
Vanierschot
,
M.
,
2021
, “
Determination of Single and Double Helical Structures in a Swirling Jet by Spectral Proper Orthogonal Decomposition
,”
Phys. Fluids
,
33
(
1
), p.
015115
.10.1063/5.0032985
12.
Ryzhenkov
,
V.
, and
Mullyadzhanov
,
R.
,
2018
, “
Large-Eddy Simulations of the Near Field of a Swirling Turbulent Annular Jet
,”
J. Phys.
,
980
, p.
012020
.10.1088/1742-6596/980/1/012020
13.
Ryzhenkov
,
V.
,
Abdurakipov
,
S.
, and
Mullyadzhanov
,
R.
,
2018
, “
The Effect of Swirl on the Near Field of Annular Jet
,”
AIP Conf. Proc.
2027(1), p. 040031.10.1063/1.5065305
14.
Shi
,
R. X.
, and
Chehroudi
,
B.
,
1994
, “
Velocity Characteristics of a Confined Highly-Turbulent Swirling Flow Near a Swirl Plate
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
685
693
.10.1115/1.2911836
15.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2003
, “
Recirculation and Flowfield Regimes of Unconfined Non-Reacting Swirling Flows
,”
Exp. Therm. Fluid Sci.
,
27
(
5
), pp.
655
665
.10.1016/S0894-1777(02)00280-7
16.
Al-Abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2004
, “
Precession and Recirculation in Turbulent Swirling Isothermal Jets
,”
Combust. Sci. Technol.
,
176
(
5–6
), pp.
645
665
.10.1080/00102200490427883
17.
Champagne
,
F. H.
, and
Kromat
,
S.
,
2000
, “
Experiments on the Formation of a Recirculation Zone in Swirling Coaxial Jets
,”
Exp. Fluids
,
29
(
5
), pp.
494
504
.10.1007/s003480000118
18.
Huang
,
R. F.
, and
Tsai
,
F. C.
,
2001
, “
Flow Field Characteristics of Swirling Double Concentric Jets
,”
Exp. Therm. Fluid Sci.
,
25
(
3–4
), pp.
151
161
.10.1016/S0894-1777(01)00086-3
19.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2013
, “
Transition and Acoustic Response of Recirculation Structures in an Unconfined Co-Axial Isothermal Swirling Flow
,”
Phys. Fluids
,
25
(
8
), p.
083603
.10.1063/1.4817665
20.
Giannadakis
,
A.
,
Perrakis
,
K.
, and
Panidis
,
T.
,
2008
, “
A Swirling Jet Under the Influence of a Coaxial Flow
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1548
1563
.10.1016/j.expthermflusci.2008.04.010
21.
Strakey
,
P. A.
, and
Yip
,
M. J.
,
2007
, “
Experimental and Numerical Investigation of a Swirl Stabilized Premixed Combustor Under Cold-Flow Conditions
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
942
953
.10.1115/1.2743665
22.
Habib
,
M. A.
, and
Whitelaw
,
J. H.
,
1980
, “
Velocity Characteristics of Confined Coaxial Jets With and Without Swirl
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
47
53
.10.1115/1.3240623
23.
Kobayashi
,
T.
, and
Yoda
,
M.
,
1987
, “
Modified Kε Model for Turbulent Swirling Flow in a Straight Pipe
,”
JSME Int. J.
,
30
(
259
), pp.
66
71
.10.1299/jsme1987.30.66
24.
Peric
,
M.
, and
Ferziger
,
J. H.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer
, Berlin.
25.
Diaz
,
D. O.
, and
Hinz
,
D. F.
,
2015
, “
Performance of Eddy-Viscosity Turbulence Models for Predicting Swirling Pipe-Flow: Simulations and Laser-Doppler Velocimetry
,” e-print
arXiv:1507.04648
.http://arxiv.org/abs/1507.04648
26.
Parra
,
T.
,
Perez
,
R.
,
Rodriguez
,
M. A.
,
Castro
,
F.
,
Szasz
,
R. Z.
, and
Gutkowski
,
A.
,
2015
, “
Numerical Simulation of Swirling Flows—Heat Transfer Enhancement
,”
J. Fluid Flow Heat Mass Transfer
,
2
, pp.
1
6
.10.11159/jffhmt.2015.001
27.
Cocic
,
A. S.
,
Lecic
,
M. R.
, and
Cantrak
,
S. M.
,
2014
, “
Numerical Analysis of Axisymmetric Turbulent Swirling Flow in Circular Pipe
,”
Therm. Sci.
,
18
(
2
), pp.
493
505
.10.2298/TSCI130315064C
28.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
23
(
8
), pp.
983
1004
.10.1016/0045-7930(94)90001-9
29.
Jakirlic
,
S.
,
Hanjalic
,
K.
, and
Tropea
,
C.
,
2002
, “
Modeling Rotating and Swirling Turbulent Flows
,”
AIAA J.
,
40
(
10
), pp.
1984
1996
.10.2514/2.1560
30.
Jones
,
W. P.
, and
Pascau
,
A.
,
1989
, “
Calculation of Confined Swirling Flows With a Second Moment Closure
,”
ASME J. Fluids Eng.
,
111
(
3
), pp.
248
255
.10.1115/1.3243638
31.
Hoekstra
,
A. J.
,
Derksen
,
J. J.
, and
Van Den Akker
,
H.
,
1999
, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2055
2065
.10.1016/S0009-2509(98)00373-X
32.
Jawarneh
,
A. M.
, and
Vatistas
,
G. H.
,
2006
, “
Reynolds Stress Model in the Prediction of Confined Turbulent Swirling Flows
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1377
1382
.10.1115/1.2354530
33.
Taglia
,
C. D.
,
Blum
,
L.
,
Gass
,
J.
,
Ventikos
,
Y.
, and
Poulikakos
,
D.
,
2004
, “
Numerical and Experimental Investigation of an Annular Jet Flow With Large Blockage
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
375
384
.10.1115/1.1760533
34.
Chen
,
X.
,
Tian
,
Z. F.
, and
Nathan
,
G. J.
,
2019
, “
Assessment of the Reliability of Two-Equation URANS Models in Predicting a Precessing Flow
,”
ASME J. Fluids Eng.
,
141
(
7
), p. 071203.10.1115/1.4042748
35.
Zhang
,
Y.
, and
Vanierschot
,
M.
,
2021
, “
Modeling Capabilities of Unsteady RANS for the Simulation of Turbulent Swirling Flow in an Annular Bluff-Body Combustor Geometry
,”
Appl. Math. Modell.
,
89
, pp.
1140
1154
.10.1016/j.apm.2020.07.037
36.
Brassard
,
D.
, and
Ferchichi
,
M.
,
2005
, “
Transformation of a Polynomial for a Contraction Wall Profile
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
183
185
.10.1115/1.1852492
37.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Technical Notes of Design for Small Low Speed Wind Tunnels
,”
Aeronaut. J. R. Aeronaut. Soc.
,
1445
(
7
), pp.
446
448
.
38.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” Joint Institute for Aeronautics and Acoustics, Stanford, CA, Report No. NASA contractor report;
NASA CR-182747
.https://ntrs.nasa.gov/citations/19890004382
39.
TSI, 2017, Phase Doppler Particle Analyzer (PDPA)/Laser Doppler Velocity (LDV) Operations Manual, P/N 1990048, Revision E, February 2006, TSI Inc., Shoreview, MN.
40.
Brum
,
R. D.
, and
Samuelsen
,
G. S.
,
1987
, “
Two-Component Laser Anemometry Measurements of Non-Reacting and Reacting Complex Flows in a Swirl-Stabilized Model Combustor
,”
Exp. Fluids
,
5
(
2
), pp.
95
102
.10.1007/BF00776179
41.
Durão
,
D. F. G.
,
Heitor
,
M. V.
, and
Moreira
,
A. L. N.
,
1993
, “
Flow Measurements in a Model Burner-Part 2
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
309
316
.10.1115/1.2910140
42.
ASME,
2005
, “
Test Uncertanity,”
ASME, New York,
ASME
Standard No. PTC 19.1-2005.https://www.asme.org/codesstandards/find-codes-standards/ptc-19-1-test-uncertainty
43.
Heitor
,
M. V.
, and
Moreira
,
A.
,
1992
, “
Velocity Characteristics of a Swirling Recirculating Flow
,”
Exp. Therm. Fluid Sci.
,
5
(
3
), pp.
369
380
.10.1016/0894-1777(92)90082-G
44.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
45.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.10.1115/1.3242537
46.
Roache
,
P. J.
,
2003
, “
Conservatism of the GCI in Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
731
732
.10.1115/1.1588692
47.
Escue
,
A.
, and
Cui
,
J.
,
2010
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Modell.
,
34
(
10
), pp.
2840
2849
.10.1016/j.apm.2009.12.018
48.
Ansys, 2017, “
Theory Guide, Release 18.0
,”
ANSYS
, Canonsburg, PA.
49.
Hosseini
,
A. A.
,
Ghodrat
,
M.
,
Moghiman
,
M.
, and
Pourhoseini
,
S. H.
,
2020
, “
Numerical Study of Inlet Air Swirl Intensity Effect of a Methane-Air Diffusion Flame on Its Combustion Characteristics
,”
Case Stud. Therm. Eng.
,
18
, p.
100610
.10.1016/j.csite.2020.100610
50.
Feikema
,
D.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
51.
Giannadakis
,
A.
,
Naxakis
,
A.
,
Romeos
,
A.
,
Perrakis
,
K.
, and
Panidis
,
T.
,
2019
, “
An Experimental Study on a Coaxial Flow With Inner Swirl: Vortex evolution and Flow Field Mixing Attributes
,”
Aerosp. Sci. Technol.
,
94
, p.
105373
.10.1016/j.ast.2019.105373
52.
Giannadakis
,
A.
,
Romeos
,
A.
,
Perrakis
,
K.
, and
Panidis
,
T.
,
2010
, “
Mixing Charactereistics of a Coaxial Swirling Jet: An Experimental Study
,”
ETMM8-Eighth International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
, Marseille, France, June 9–11, pp.
98
103
.
53.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.10.1017/S0022112071000181
54.
Billant
,
P.
,
Chomaz
,
J. M.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
55.
Kitoh
,
O.
,
1991
, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.10.1017/S0022112091002124
56.
Marliani
,
R.
,
Schmidts
,
G.
, and
Vasanta Ram
,
V.
,
2003
, “
Three-Dimensional Laser-Doppler Velocimeter Measurements in Swirling Turbulent Pipe Flow
,”
Flow Turbul. Combust.
,
70
(
1–4
), pp.
43
67
.10.1023/B:APPL.0000004913.82057.81
57.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2014
, “
Transition in Vortex Breakdown Modes in a Coaxial Isothermal Unconfined Swirling Jet
,”
Phys. Fluids
,
26
(
4
), p.
043601
.10.1063/1.4870016
You do not currently have access to this content.