Abstract

In this paper, we numerically investigate the dynamics of a compound droplet driven by surface tension variation induced by a thermal gradient in a sinusoidal constriction tube. Initially, the compound droplet with a concentric inner core is spherical and placed in the constriction's upstream region at a low temperature. As time progresses, it migrates downstream with a high temperature. Due to the constriction, the droplet is slowed down in the upstream region and accelerated again right after passing the constriction. This acceleration maximizes the eccentricity. However, the constriction results in an increase in the maximum eccentricity when increasing its depth to a value corresponding to the size of the tube neck, which is greater than or equal to the droplet size. Effects of various parameters, e.g., the Marangoni number Ma, the capillary number Ca, and the radius ratio Rio, are studied. It is found that increasing the Ma number or decreasing the Ca number reduces the maximum eccentricity and prolongs the travel time, i.e., the arrival time, from the upstream to the downstream. A similar reduction in the maximum eccentricity also occurs with the increased Rio ratio. Effects of these parameters on the migration velocity are also revealed.

References

1.
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Li
,
X.
,
Vadali
,
M.
, and
Ma
,
C.
,
2013
, “
Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow
,”
CIRP Ann.
,
62
(
1
), pp.
203
206
.10.1016/j.cirp.2013.03.112
2.
Uhlmann
,
D. R.
,
1981
, “
Glass Processing in a Microgravity Environment
,”
MRS Proc.
,
9
, pp.
269
278
.10.1557/PROC-9-269
3.
McClements
,
D. J.
,
2012
, “
Advances in Fabrication of Emulsions With Enhanced Functionality Using Structural Design Principles
,”
Curr. Opin. Colloid Interface Sci.
,
17
(
5
), pp.
235
245
.10.1016/j.cocis.2012.06.002
4.
Sammarco
,
T. S.
, and
Burns
,
M. A.
,
1999
, “
Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices
,”
AIChE J.
,
45
(
2
), pp.
350
366
.10.1002/aic.690450215
5.
Lao
,
K.-L.
,
Wang
,
J.-H.
, and
Lee
,
G.-B.
,
2009
, “
A Microfluidic Platform for Formation of Double-Emulsion Droplets
,”
Microfluids Nanofluids
,
7
(
5
), pp.
709
719
.10.1007/s10404-009-0430-9
6.
Sobac
,
B.
,
Rednikov
,
A.
,
Dorbolo
,
S.
, and
Colinet
,
P.
,
2017
, “
Self-Propelled Leidenfrost Drops on a Thermal Gradient: A Theoretical Study
,”
Phys. Fluids
,
29
(
8
), p.
082101
.10.1063/1.4990840
7.
Robert de Saint Vincent
,
M.
,
Wunenburger
,
R.
, and
Delville
,
J.-P.
,
2008
, “
Laser Switching and Sorting for High Speed Digital Microfluidics
,”
Appl. Phys. Lett.
,
92
(
15
), p.
154105
.10.1063/1.2911913
8.
Maan
,
A. A.
,
Schroën
,
K.
, and
Boom
,
R.
,
2011
, “
Spontaneous Droplet Formation Techniques for Monodisperse Emulsions Preparation – Perspectives for Food Applications
,”
J. Food Eng.
,
107
(
3–4
), pp.
334
346
.10.1016/j.jfoodeng.2011.07.008
9.
Muschiolik
,
G.
,
2007
, “
Multiple Emulsions for Food Use
,”
Curr. Opin. Colloid Interface Sci.
,
12
(
4–5
), pp.
213
220
.10.1016/j.cocis.2007.07.006
10.
Hang Koh
,
W.
,
Seng Lok
,
K.
, and
Nguyen
,
N.-T.
,
2013
, “
A Digital Micro Magnetofluidic Platform for Lab-on-a-Chip Applications
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
021302
.10.1115/1.4023443
11.
Neeson
,
M. J.
,
Tabor
,
R. F.
,
Grieser
,
F.
,
Dagastine
,
R. R.
, and
Chan
,
D. Y. C.
,
2012
, “
Compound Sessile Drops
,”
Soft Matter
,
8
(
43
), p.
11042
.10.1039/c2sm26637g
12.
Iqbal
,
R.
,
Dhiman
,
S.
,
Sen
,
A. K.
, and
Shen
,
A. Q.
,
2017
, “
Dynamics of a Water Droplet Over a Sessile Oil Droplet: Compound Droplets Satisfying a Neumann Condition
,”
Langmuir
,
33
(
23
), pp.
5713
5723
.10.1021/acs.langmuir.6b04621
13.
Mahadevan
,
L.
,
Adda-Bedia
,
M.
, and
Pomeau
,
Y.
,
2002
, “
Four-Phase Merging in Sessile Compound Drops
,”
J. Fluid Mech.
,
451
, pp.
411
420
.10.1017/S0022112001007108
14.
Nagy
,
P. T.
, and
Neitzel
,
G. P.
,
2008
, “
Optical Levitation and Transport of Microdroplets: Proof of Concept
,”
Phys. Fluids
,
20
(
10
), p.
101703
.10.1063/1.3005394
15.
Nguyen
,
H. D.
,
Vu
,
T. V.
,
Nguyen
,
P. H.
,
Pham
,
B. D.
,
Ho
,
N. X.
,
Nguyen
,
C. T.
, and
Nguyen
,
V. T.
,
2021
, “
Numerical Study of the Indentation Formation of a Compound Droplet in a Constriction
,”
J. Mech. Sci. Technol.
,
35
(
4
), pp.
1515
1526
.10.1007/s12206-021-0316-7
16.
Vu
,
T. V.
,
Bui
,
D. T.
,
Nguyen
,
Q. D.
, and
Pham
,
P. H.
,
2020
, “
Numerical Study of Rheological Behaviors of a Compound Droplet in a Conical Nozzle
,”
Int. J. Heat Fluid Flow
,
85
, p.
108655
.10.1016/j.ijheatfluidflow.2020.108655
17.
Mahato
,
J.
,
Srivastava
,
D. K.
,
Chandraker
,
D. K.
, and
Lakkaraju
,
R.
,
2021
, “
On Offset Placement of a Compound Droplet in a Channel Flow
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031401
.10.1115/1.4052052
18.
Nguyen
,
C. T.
,
Vu
,
H. V.
,
Vu
,
T. V.
,
Truong
,
T. V.
,
Ho
,
N. X.
,
Pham
,
B. D.
,
Nguyen
,
H. D.
, and
Nguyen
,
V. T.
,
2021
, “
Numerical Analysis of Deformation and Breakup of a Compound Droplet in Microchannels
,”
Eur. J. Mech. - B/Fluids
,
88
, pp.
135
147
.10.1016/j.euromechflu.2021.03.005
19.
Hashem
,
M. A.
,
Aghilinejad
,
A.
,
Chen
,
X.
, and
Tan
,
H.
,
2020
, “
Compound Droplet Modeling for Circulating Tumor Cell Microfiltration With Adaptive Meshing Refinement
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111403
.10.1115/1.4048134
20.
Santra
,
S.
,
Das
,
S.
, and
Chakraborty
,
S.
,
2020
, “
Electrically Modulated Dynamics of a Compound Droplet in a Confined Microfluidic Environment
,”
J. Fluid Mech.
,
882
, p.
A23
.10.1017/jfm.2019.810
21.
Young
,
N. O.
,
Goldstein
,
J. S.
, and
Block
,
M. J.
,
1959
, “
The Motion of Bubbles in a Vertical Temperature Gradient
,”
J. Fluid Mech.
,
6
(
03
), pp.
350
356
.10.1017/S0022112059000684
22.
Subramanian
,
R. S.
,
1983
, “
Thermocapillary Migration of Bubbles and Droplets
,”
Adv. Space Res.
,
3
(
5
), pp.
145
153
.10.1016/0273-1177(83)90239-9
23.
Subramanian
,
R. S.
,
1981
, “
Slow Migration of a Gas Bubble in a Thermal Gradient
,”
AIChE J.
,
27
(
4
), pp.
646
654
.10.1002/aic.690270417
24.
SZYMCZYK
,
J.
, and
SIEKMANN
,
J.
,
1988
, “
Numerical Calculation of the Thermocapillary Motion of a Bubble Under Microgravity
,”
Chem. Eng. Commun.
,
69
(
1
), pp.
129
147
.10.1080/00986448808940609
25.
Balasubramaniam
,
R.
, and
Lavery
,
J. E.
,
1989
, “
Numerical Simulation of Thermocapillary Bubble Migration Under Microgravity for Large Reynolds and Marangoni Numbers
,”
Numer. Heat Transf. Part Appl.
,
16
(
2
), pp.
175
187
.10.1080/10407788908944712
26.
Haj-Hariri
,
H.
,
Nadim
,
A.
, and
Borhan
,
A.
,
1990
, “
Effect of Inertia on the Thermocapillary Velocity of a Drop
,”
J. Colloid Interface Sci.
,
140
(
1
), pp.
277
286
.10.1016/0021-9797(90)90342-L
27.
Chen
,
J. C.
, and
Lee
,
Y. T.
,
1992
, “
Effect of Surface Deformation on Thermocapillary Bubble Migration
,”
AIAA J.
,
30
(
4
), pp.
993
998
.10.2514/3.11019
28.
Haj-Hariri
,
H.
,
Shi
,
Q.
, and
Borhan
,
A.
,
1997
, “
Thermocapillary Motion of Deformable Drops at Finite Reynolds and Marangoni Numbers
,”
Phys. Fluids
,
9
(
4
), pp.
845
855
.10.1063/1.869182
29.
Welch
,
S. W. J.
,
1998
, “
Transient Thermocapillary Migration of Deformable Bubbles
,”
J. Colloid Interface Sci.
,
208
(
2
), pp.
500
508
.10.1006/jcis.1998.5883
30.
Meyyappan
,
M.
,
Wilcox
,
W. R.
, and
Subramanian
,
R. S.
,
1983
, “
The Slow Axisymmetric Motion of Two Bubbles in a Thermal Gradient
,”
J. Colloid Interface Sci.
,
94
(
1
), pp.
243
257
.10.1016/0021-9797(83)90255-2
31.
Acrivos
,
A.
,
Jeffrey
,
D. J.
, and
Saville
,
D. A.
,
1990
, “
Particle Migration in Suspensions by Thermocapillary or Electrophoretic Motion
,”
J. Fluid Mech.
,
212
, pp.
95
110
.10.1017/S0022112090001884
32.
Anderson
,
J. L.
,
1985
, “
Droplet Interactions in Thermocapillary Motion
,”
Int. J. Multiph. Flow
,
11
(
6
), pp.
813
824
.10.1016/0301-9322(85)90026-6
33.
Morton
,
D. S.
,
Subramanian
,
R. S.
, and
Balasubramaniam
,
R.
,
1990
, “
The Migration of a Compound Drop Due to Thermocapillarity
,”
Phys. Fluids Fluid Dyn.
,
2
(
12
), pp.
2119
2133
.10.1063/1.857798
34.
Jadhav
,
S. N.
, and
Ghosh
,
U.
,
2021
, “
Thermocapillary Effects on Eccentric Compound Drops in Poiseuille Flows
,”
Phys. Rev. Fluids
,
6
(
7
), p.
073602
.10.1103/PhysRevFluids.6.073602
35.
Nguyen
,
V. T.
,
Vu
,
T. V.
,
Nguyen
,
P. H.
,
Ho
,
N. X.
,
Pham
,
B. D.
,
Nguyen
,
H. D.
, and
Vu
,
H. V.
,
2021
, “
Thermocapillary Migration of a Fluid Compound Droplet
,”
J. Mech. Sci. Technol.
,
35
(
9
), pp.
4033
4044
.10.1007/s12206-021-0816-5
36.
Kalichetty
,
S. S.
,
Sundararajan
,
T.
, and
Pattamatta
,
A.
,
2019
, “
Thermocapillary Migration and Interaction Dynamics of Droplets in a Constricted Domain
,”
Phys. Fluids
,
31
(
2
), p.
022106
.10.1063/1.5084313
37.
Lu
,
M.
,
Lu
,
J.
,
Zhang
,
Y.
, and
Tryggvason
,
G.
,
2019
, “
Numerical Study of Thermocapillary Migration of a Bubble in a Channel With an Obstruction
,”
Phys. Fluids
,
31
(
6
), p.
062101
.10.1063/1.5094033
38.
Selva
,
B.
,
Miralles
,
V.
,
Cantat
,
I.
, and
Jullien
,
M.-C.
,
2010
, “
Thermocapillary Actuation by Optimized Resistor Pattern: Bubbles and Droplets Displacing, Switching and Trapping
,”
Lab. Chip
,
10
(
14
), p.
1835
.10.1039/c001900c
39.
Fernandez
,
D. M.
, and
Giannarelli
,
C.
,
2022
, “
Immune Cell Profiling in Atherosclerosis: Role in Research and Precision Medicine
,”
Nat. Rev. Cardiol.
,
19
(
1
), pp.
43
58
.10.1038/s41569-021-00589-2
40.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
41.
Tsai
,
T. M.
, and
Miksis
,
M. J.
,
1994
, “
Dynamics of a Drop in a Constricted Capillary Tube
,”
J. Fluid Mech.
,
274
, pp.
197
217
.10.1017/S0022112094002090
42.
Vu
,
T.-V.
,
Vu
,
T. V.
,
Nguyen
,
C. T.
, and
Pham
,
P. H.
,
2019
, “
Deformation and Breakup of a Double-Core Compound Droplet in an Axisymmetric Channel
,”
Int. J. Heat Mass Transfer
,
135
, pp.
796
810
.10.1016/j.ijheatmasstransfer.2019.02.032
43.
Nas
,
S.
, and
Tryggvason
,
G.
,
2003
, “
Thermocapillary Interaction of Two Bubbles or Drops
,”
Int. J. Multiph. Flow
,
29
(
7
), pp.
1117
1135
.10.1016/S0301-9322(03)00084-3
44.
Vu
,
T. V.
,
Truong
,
A. V.
,
Hoang
,
N. T. B.
, and
Tran
,
D. K.
,
2016
, “
Numerical Investigations of Solidification Around a Circular Cylinder Under Forced Convection
,”
J. Mech. Sci. Technol.
,
30
(
11
), pp.
5019
5028
.10.1007/s12206-016-1021-9
45.
Vu
,
T. V.
, and
Wells
,
J. C.
,
2017
, “
Numerical Simulations of Solidification Around Two Tandemly-Arranged Circular Cylinders Under Forced Convection
,”
Int. J. Multiph. Flow
,
89
, pp.
331
344
.10.1016/j.ijmultiphaseflow.2016.11.007
46.
Karapetsas
,
G.
,
Sahu
,
K. C.
,
Sefiane
,
K.
, and
Matar
,
O. K.
,
2014
, “
Thermocapillary-Driven Motion of a Sessile Drop: Effect of Non-Monotonic Dependence of Surface Tension on Temperature
,”
Langmuir
,
30
(
15
), pp.
4310
4321
.10.1021/la5002682
47.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2011
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
,
Cambridge University Press
, Cambridge, UK.
48.
Borthakur
,
M.
,
Biswas
,
G.
, and
Bandyopadhyay
,
D.
,
2018
, “
Dynamics of Deformation and Pinch-Off of a Migrating Compound Droplet in a Tube
,”
Phys. Rev. E
,
97
(
4
), p.
043112
.10.1103/PhysRevE.97.043112
49.
Vu
,
T. V.
, and
Pham
,
P. H.
,
2020
, “
Numerical Study of a Compound Droplet Moving Toward a Rigid Wall in an Axisymmetric Channel
,”
Int. J. Heat Fluid Flow
,
82
, p.
108542
.10.1016/j.ijheatfluidflow.2020.108542
50.
Gao
,
P.
,
Yin
,
Z.
, and
Hu
,
W.
,
2008
, “
Thermocapillary Motion of Droplets at Large Marangoni Numbers
,”
Adv. Space Res.
,
41
(
12
), pp.
2101
2106
.10.1016/j.asr.2007.06.031
51.
Yin
,
Z.
,
Chang
,
L.
,
Hu
,
W.
,
Li
,
Q.
, and
Wang
,
H.
,
2012
, “
Numerical Simulations on Thermocapillary Migrations of Nondeformable Droplets With Large Marangoni Numbers
,”
Phys. Fluids
,
24
(
9
), p.
092101
.10.1063/1.4752028
You do not currently have access to this content.