Abstract

Wells turbines are among the most interesting power takeoff devices used in oscillating water column (OWC) systems for the conversion of ocean-wave energy into electrical energy. Several configurations have been studied during the last decades, both experimentally and numerically. Different methodologies have been proposed to estimate the efficiency of this turbine, as well as different approaches to evaluate the intermediate quantities required. Recent works have evaluated the so-called second-law efficiency of a Wells turbine, and compared it to the more often used first-law efficiency. In this study, theoretical analyses and numerical simulations have been used to demonstrate how these two efficiency measures should lead to equivalent values, given the low pressure ratio of the machine. In numerical simulations, small discrepancies can exist, but they are due to the difficulty of ensuring entropy conservation on complex three-dimensional meshes. The efficiencies of different rotor geometries are analyzed based on the proposed measures, and the main sources of loss are identified.

References

1.
Pelc
,
R.
, and
Fujita
,
R.
,
2002
, “
Renewable Energy From the Ocean
,”
Mar. Policy
,
26
(
6
), pp.
471
479
.10.1016/S0308-597X(02)00045-3
2.
Falcão
,
A.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.10.1016/j.rser.2009.11.003
3.
Wells
,
A.
,
1976
, “Fluid Driven Rotary Transducer,” Patent No. 1595700A.
4.
Curran
,
R.
, and
Gato
,
L. M. C.
,
1997
, “
The Energy Conversion Performance of Several Types of Wells Turbine Designs
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
2
), pp.
133
145
.10.1243/0957650971537051
5.
Thakker
,
A.
, and
Abdulhadi
,
R.
,
2008
, “
The Performance of Wells Turbine Under bi-Directional Airflow
,”
Renewable Energy
,
33
(
11
), pp.
2467
2474
.10.1016/j.renene.2008.02.013
6.
Paderi
,
M.
, and
Puddu
,
P.
,
2013
, “
Experimental Investigation in a Wells Turbine Under Bi-Directional Flow
,”
Renewable Energy
,
57
, pp.
570
576
.10.1016/j.renene.2013.02.016
7.
Dhanasekaran
,
T.
, and
Govardhan
,
M.
,
2005
, “
Computational Analysis of Performance and Flow Investigation on Wells Turbine for Wave Energy Conversion
,”
Renewable Energy
,
30
(
14
), pp.
2129
2147
.10.1016/j.renene.2005.02.005
8.
Setoguchi
,
T.
,
Kinoue
,
Y.
,
Kim
,
T.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
Renewable Energy
,
28
(
13
), pp.
2113
2127
.10.1016/S0960-1481(03)00079-X
9.
Torresi
,
M.
,
Camporeale
,
S.
, and
Pascazio
,
G.
,
2009
, “
Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071103
.10.1115/1.3155921
10.
Shehata
,
A.
,
Saqr
,
K.
,
Xiao
,
Q.
,
Shehadeh
,
M.
, and
Day
,
A.
,
2016
, “
Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method
,”
Renewable Energy
,
86
, pp.
1123
1133
.10.1016/j.renene.2015.09.045
11.
Shehata
,
A.
,
Xiao
,
Q.
,
El-Shaib
,
M.
,
Sharara
,
A.
, and
Alexander
,
D.
,
2017
, “
Comparative Analysis of Different Wave Turbine Designs Based on Conditions Relevant to Northern Coast of Egypt
,”
Energy
,
120
, pp.
450
467
.10.1016/j.energy.2016.11.091
12.
Soltanmohamadi
,
R.
, and
Lakzian
,
E.
,
2016
, “
Improved Design of Wells Turbine for Wave Energy Conversion Using Entropy Generation
,”
Meccanica
,
51
(
8
), pp.
1713
1722
.10.1007/s11012-015-0330-x
13.
Shaaban
,
S.
,
2012
, “
Insight Analysis of Biplane Wells Turbine Performance
,”
Energy Convers. Manage.
,
59
, pp.
50
57
.10.1016/j.enconman.2012.02.006
14.
Gratton
,
T.
,
Ghisu
,
T.
,
Parks
,
G.
,
Cambuli
,
F.
, and
Puddu
,
P.
,
2018
, “
Optimization of Blade Profiles for the Wells Turbine
,”
Ocean Eng.
,
169
, pp.
202
214
.10.1016/j.oceaneng.2018.08.066
15.
Kim
,
T.
,
Setoguchi
,
T.
,
Takao
,
M.
,
Kaneko
,
K.
, and
Santhakumar
,
S.
,
2002
, “
Study of Turbine With Self-Pitch-Controlled Blades for Wave Energy Conversion
,”
Int. J. Therm. Sci.
,
41
(
1
), pp.
101
107
.10.1016/S1290-0729(01)01308-4
16.
Starzmann
,
R.
, and
Carolus
,
T.
,
2014
, “
Effect of Blade Skew Strategies on the Operating Range and Aeroacoustic Performance of the Wells Turbine
,”
ASME J. Turbomach.
,
136
(
1
), p.
011003
.10.1115/1.4025156
17.
Licheri
,
F.
,
Climan
,
A.
,
Puddu
,
P.
,
Cambuli
,
F.
, and
Ghisu
,
T.
,
2018
, “
Numerical Study of a Wells Turbine With Variable Pitch Rotor Blades
,”
Energy Procedia
,
148
, pp.
511
518
10.1016/j.egypro.2018.08.127.
18.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Multi-Objective Optimization of the Airfoil Shape of Wells Turbine Used for Wave Energy Conversion
,”
Energy
,
36
(
1
), pp.
438
446
.10.1016/j.energy.2010.10.021
19.
Mohamed
,
M.
, and
Shaaban
,
S.
,
2013
, “
Optimization of Blade Pitch Angle of an Axial Turbine Used for Wave Energy Conversion
,”
Energy
,
56
, pp.
229
239
.10.1016/j.energy.2013.04.035
20.
Halder
,
P.
,
Rhee
,
S. H.
, and
Samad
,
A.
,
2017
, “
Numerical Optimization of Wells Turbine for Wave Energy Extraction
,”
Int. J. Nav. Arch. Ocean Eng.
,
9
(
1
), pp.
11
24
.10.1016/j.ijnaoe.2016.06.008
21.
Nazeryan
,
M.
, and
Lakzian
,
E.
,
2018
, “
Detailed Entropy Generation Analysis of a Wells Turbine Using the Variation of the Blade Thickness
,”
Energy
,
143
, pp.
385
405
.10.1016/j.energy.2017.11.006
22.
Shehata
,
A.
,
Xiao
,
Q.
,
Selim
,
M.
,
Elbatran
,
A.
, and
Alexander
,
D.
,
2017
, “
Enhancement of Performance of Wave Turbine During Stall Using Passive Flow Control: First and Second Law Analysis
,”
Renewable Energy
,
113
, pp.
369
392
.10.1016/j.renene.2017.06.008
23.
Suzuki
,
M.
,
Arakawa
,
C.
, and
Tagori
,
T.
,
1984
, “
Fundamental Studies on Wells Turbine for Wave Power Generator (1st Report, the Effect of Solidity, and Self-Starting)
,”
Bull. JSME
,
27
(
231
), pp.
1925
1931
.10.1299/jsme1958.27.1925
24.
Gato
,
L.
, and
de O. Falcão
,
A.
,
1988
, “
Aerodynamics of the Wells Turbine
,”
Int. J. Mech. Sci.
,
30
(
6
), pp.
383
395
.10.1016/0020-7403(88)90012-4
25.
Folley
,
M.
,
Curran
,
R.
, and
Whittaker
,
T.
,
2006
, “
Comparison of Limpet Contra-Rotating Wells Turbine With Theoretical and Model Test Predictions
,”
Ocean Eng.
,
33
(
8–9
), pp.
1056
1069
.10.1016/j.oceaneng.2005.08.001
26.
Raghunathan
,
S.
,
Tan
,
C. P.
, and
Ombaka
,
O. O.
,
1985
, “
Performance of the Wells Self-Rectifying Air Turbine
,”
Aeronaut. J.
,
89
, pp.
369
379
.10.1017/S0001924000096743
27.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 6th ed.,
Elsevier
,
Burlington, MA
.
28.
Raghunathan
,
S.
,
Tan
,
C.
, and
Wells
,
N.
,
1982
, “
Theory and Performance of a Wells Turbine
,”
J. Energy
,
6
(
2
), pp.
157
160
.10.2514/3.48047
29.
Gato
,
L. M. C.
, and
Curran
,
R.
,
1996
, “
Performance of the Biplane Wells Turbine
,”
ASME J. Offshore Mech. Arct. Eng.
,
118
(
3
), pp.
210
215
.10.1115/1.2828836
30.
Gato
,
L. M. C.
, and
Falcão
,
A. F. D. O.
,
1984
, “
On the Theory of the Wells Turbine
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
628
633
.10.1115/1.3239616
31.
Bejan
,
A.
,
2006
,
Advanced Engineering Thermodynamics
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
32.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G. T.
,
2018
, “
Numerical Evaluation of Entropy Generation in Isolated Airfoils and Wells Turbines
,”
Meccanica
,
53
(
14
), pp.
3437
3456
.10.1007/s11012-018-0896-1
33.
Ferziger
,
J. H.
, and
Peric̀
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
34.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited
,
Harlow, UK
.
35.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
,
1984
,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
Boca Raton, FL
.
36.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
37.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations—Part I: A Turbulent Boundary Layer Flow
,”
ASME
Paper No. 83-GT-70.10.1115/83-GT-70
38.
Iandoli
,
C. L.
,
Sciubba
,
E.
, and
Zeoli
,
N.
,
2008
, “
The Computation of the Entropy Generation Rate for Turbomachinery Design Applications: Some Theoretical Remarks and Practical Examples
,”
Int. J. Energy Technol. Policy
,
6
(
1/2
), pp.
64
95
.10.1504/IJETP.2008.017030
39.
Jin
,
Y.
, and
Herwig
,
H.
,
2015
, “
Turbulent Flow in Rough Wall Channels: Validation of Rans Models
,”
Comput. Fluids
,
122
, pp.
34
46
.10.1016/j.compfluid.2015.08.005
40.
Asinari
,
P.
,
Fasano
,
M.
, and
Chiavazzo
,
E.
,
2016
, “
A Kinetic Perspective on k ε Turbulence Model and Corresponding Entropy Production
,”
Entropy
,
18
(
4
), p. 121.10.3390/e18040121
41.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
42.
ANSYS, Inc.,
2013
, “
ANSYS Fluent User's Guide
,” 15.0 ed.,
Southpointe/ANSYS
,
Canonsburg, PA
.
43.
Setoguchi
,
T.
,
Takao
,
M.
, and
Kaneko
,
K.
,
1998
, “
Hysteresis on Wells Turbine Characteristics in Reciprocating Flow
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
17
24
.10.1155/S1023621X98000025
44.
Wilkinson
,
M. B.
,
van der Spuy
,
J.
, and
von Backström
,
T. W.
,
2018
, “
Performance Testing of an Axial Flow Fan Designed for Air-Cooled Heat Exchanger Applications
,”
ASME
Paper No. GT2018-75964.10.1115/GT2018-75964
45.
Sun
,
T.
,
Petrie-Repar
,
P.
,
Vogt
,
D. M.
, and
Hou
,
A.
,
2019
, “
Detached-Eddy Simulation Applied to Aeroelastic Stability Analysis in a Last-Stage Steam Turbine Blade
,”
ASME J. Turbomach.
,
141
(
9
), p.
091002
.10.1115/1.4043407
46.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2020
, “
Scaling of Incidence Variations With Inlet Distortion for a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
142
(
2
), p.
021003
.10.1115/1.4045464
47.
Watterson
,
J.
, and
Raghunathan
,
S.
,
1998
, “
Computed Effects of Solidity on Wells Turbine Performance
,”
JSME Int. J., Ser. B
,
41
(
1
), pp.
177
183
.10.1299/jsmeb.41.177
48.
Hashem
,
I.
,
Abdel Hameed
,
H.
, and
Mohamed
,
M.
,
2018
, “
An Axial Turbine in an Innovative Oscillating Water Column (OWC) Device for Sea-Wave Energy Conversion
,”
Ocean Eng.
,
164
, pp.
536
562
.10.1016/j.oceaneng.2018.06.067
49.
Das
,
T. K.
, and
Samad
,
A.
,
2019
, “
The Effect of Midplane Guide Vanes in a Biplane Wells Turbine
,”
ASME J. Fluids Eng.
,
141
(
5
), p. 051107.10.1115/1.4041600
50.
Kumar
,
P. M.
, and
Samad
,
A.
,
2019
, “
Introducing Gurney Flap to Wells Turbine Blade and Performance Analysis With Openfoam
,”
Ocean Eng.
,
187
, p.
106212
.10.1016/j.oceaneng.2019.106212
51.
Valizadeh
,
R.
,
Abbaspour
,
M.
, and
Rahni
,
M. T.
,
2020
, “
A Low Cost Hydrokinetic Wells Turbine System for Oceanic Surface Waves Energy Harvesting
,”
Renewable Energy
,
156
, pp.
610
623
.10.1016/j.renene.2020.04.059
52.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2016
, “
Physical Explanation of the Hysteresis in Wells Turbines: A Critical Reconsideration
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111105
.10.1115/1.4033320
53.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2017
, “
A Detailed Analysis of the Unsteady Flow Within a Wells Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
3
), pp.
197
214
.10.1177/0957650917691640
54.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
, and
Virdis
,
I.
,
2017
, “
On the Hysteretic Behaviour of Wells Turbines
,”
Energy Procedia
,
126
, pp.
706
713
.10.1016/j.egypro.2017.08.303
55.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Virdis
,
I.
,
Carta
,
M.
, and
Licheri
,
F.
,
2020
, “
A Critical Examination of the Hysteresis in Wells Turbines Using Computational Fluid Dynamics and Lumped Parameter Models
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
5
), p.
052001
.10.1115/1.4046379
56.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.10.1115/1.3242537
57.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
58.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
59.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Virdis
,
I.
, and
Carta
,
M.
,
2019
, “
Discussion on “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions” by Hu and Li
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
4
), p.
045501
.10.1115/1.4042875
60.
Brito-Melo
,
A.
,
Neuman
,
F.
, and
Sarmento
,
A. J. N. A.
,
2008
, “
Full-Scale Data Assessment in OWC Pico Plant
,”
Proceedings of the 17th International Journal of Offshore and Polar Engineering
, Lisbon, Portugal, July, Vol.
18
, pp.
27
34
.
61.
Garrido
,
A. J.
,
Otaola
,
E.
,
Garrido
,
I.
,
Lekube
,
J.
,
Maseda
,
F. J.
,
Liria
,
P.
, and
Mad Er
,
J.
,
2015
, “
Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants
,”
Math. Probl. Eng.
,
2015
, pp.
1
11
.10.1155/2015/727982
62.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G.
,
2018
, “
Discussion on “Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method” by Shehata, A. S., Saqr, K. M., Xiao, Q., Shahadeh, M. F. and Day, A
,”
Renewable Energy
,
118
, pp.
386
392
.10.1016/j.renene.2017.10.107
63.
Carr
,
L. W.
,
McAlister
,
K. W.
, and
McCroskey
,
W. J.
,
1977
, “
Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiment
,” NASA AMES Research Center, Washington, DC, Report No. D-8382.
64.
Ericsson
,
L. E.
, and
Reding
,
J. P.
,
1988
, “
Fluid Mechanics of Dynamic Stall—Part 1: Unsteady Flow Concepts
,”
J. Fluids Struct.
,
2
(
1
), pp.
1
33
.10.1016/S0889-9746(88)90116-8
65.
Barakos
,
G. N.
, and
Drikakis
,
D.
,
2003
, “
Computational Study of Unsteady Turbulent Flows Around Oscillating and Ramping Aerofoils
,”
Int. J. Numer. Methods Fluids
,
42
(
2
), pp.
163
186
.10.1002/fld.478
66.
Cambuli
,
F.
,
Ghisu
,
T.
,
Virdis
,
I.
, and
Puddu
,
P.
,
2019
, “
Dynamic Interaction Between OWC System and Wells Turbine: A Comparison Between CFD and Lumped Parameter Model Approaches
,”
Ocean Eng.
,
191
, p.
106459
.10.1016/j.oceaneng.2019.106459
67.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Virdis
,
I.
,
Carta
,
M.
, and
Licheri
,
F.
,
2020
, “
A Lumped Parameter Model to Explain the Cause of the Hysteresis in OWC-Wells Turbine Systems for Wave Energy Conversion
,”
Appl. Ocean Res.
,
94
, p.
101994
.10.1016/j.apor.2019.101994
68.
Mittal
,
S.
, and
Saxena
,
P.
,
2000
, “
Prediction of Hysteresis Associated With the Static Stall of an Airfoil
,”
AIAA J.
,
38
(
5
), pp.
933
935
.10.2514/2.1051
69.
Sarlak
,
H.
,
Fr Re
,
A.
,
Mikkelsen
,
R.
, and
Sørensen
,
J.
,
2018
, “
Experimental Investigation of Static Stall Hysteresis and 3-Dimensional Flow Structures for an NREL S826 Wing Section of Finite Span
,”
Energies
,
11
(
6
), p.
1418
.10.3390/en11061418
70.
Menter
,
F.
,
1992
, “
Performance of Popular Turbulence Models for Attached and Separated Adverse Pressure Gradient Flows
,”
AIAA J.
,
30
(
8
), pp.
2066
2072
.10.2514/3.11180
71.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
72.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
73.
Fidkowski
,
K. J.
,
Ceze
,
M. A.
, and
Roe
,
P. L.
,
2012
, “
Entropy-Based Drag-Error Estimation and Mesh Adaptation in Two Dimensions
,”
J. Aircr.
,
49
(
5
), pp.
1485
1496
.10.2514/1.C031795
74.
Mizoguchi
,
M.
,
Kajikawa
,
Y.
, and
Itoh
,
H.
,
2014
, “
Static Stall Hysteresis of Low-Aspect-Ratio Wings
,”
AIAA
Paper No.
2014
2014
.10.2514/6.2014-2014
75.
Modarres
,
R.
,
Peters
,
D.
, and
Gaskill
,
J.
,
2016
, “
Dynamic Stall Model With Circulation Pulse and Static Hysteresis for NACA 0012 and VR-12 Airfoils
,”
J. Am. Helicopter Soc.
,
61
(
3
), pp.
1
10
.10.4050/JAHS.61.032004
76.
Thakker
,
A.
, and
Abdulhadi
,
R.
,
2007
, “
Effect of Blade Profile on the Performance of Wells Turbine Under Unidirectional Sinusoidal and Real Sea Flow Conditions
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
9
.10.1155/2007/51598
77.
Torresi
,
M.
,
Camporeale
,
S.
,
Strippoli
,
P.
, and
Pascazio
,
G.
,
2008
, “
Accurate Numerical Simulation of a High Solidity Wells Turbine
,”
Renewable Energy
,
33
(
4
), pp.
735
747
.10.1016/j.renene.2007.04.006
You do not currently have access to this content.