Abstract

Inducers show generally a positive influence on the performance of centrifugal pumps in the two-phase regime, since they produce more uniform mixtures and increase the pressure before the impeller. However, the effect is much more pronounced in part-load compared to overload conditions. In this study, the air–water two-phase flow behavior in a pump inducer was numerically investigated. The main objectives were to clarify the effect of the inducer, the effective operating range, and to examine flow mixing. Several flow conditions were studied, covering part-load, optimal, and overload pumping conditions, together with different relevant gas volume fractions (1%, 3%, and 5%). The simulations were performed using a transient setup and a moving-mesh approach. Two-phase air–water interactions were modeled by the volume of fluid (VOF) method. After checking the proper discretization in space and time, the model was validated against experimental results, revealing excellent agreement. The numerical analysis was able to explain different effects of inducers in part-load and overload conditions. Under overload conditions, the flow separates, leading to the generation of axial vortices and to a negative pressure change across the inducer; additionally, the residence time is reduced, hindering mixing. These vortices are intensified as the gas volume fraction increases, reducing further the pressure downstream of the inducer. This is the reason why inducers can mainly be used in part-load and near optimal conditions in order to improve pumping of two-phase flows.

References

1.
Mansour
,
M.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Experimental Study of Two-Phase Air/Water Flow in a Centrifugal Pump Working With a Closed or a Semi-Open Impeller
,”
ASME
Paper No. GT2018-75380.10.1115/GT2018-75380
2.
Mansour
,
M.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Effect of Tip Clearance Gap and Inducer on the Transport of Two-Phase Air-Water Flows by Centrifugal Pumps
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
487
509
.10.1016/j.expthermflusci.2018.08.018
3.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.10.1016/j.petrol.2008.06.005
4.
Zhu
,
J.
,
Zhu
,
H.
,
Zhang
,
J.
, and
Zhang
,
H. Q.
,
2017
, “
An Experimental Study of Surfactant Effect on Gas Tolerance in Electrical Submersible Pump (ESP)
,”
ASME
Paper No. IMECE2017-70165.10.1115/IMECE2017-70165
5.
Amoresano
,
A.
,
Langella
,
G.
,
Niola
,
V.
, and
Quaremba
,
G.
,
2014
, “
Advanced Image Analysis of Two-Phase Flow Inside a Centrifugal Pump
,”
Adv. Mech. Eng.
,
6
, p.
958320
.10.1155/2014/958320
6.
Poullikkas
,
A.
,
2003
, “
Effects of Two-Phase Liquid-Gas Flow on the Performance of Nuclear Reactor Cooling Pumps
,”
Prog. Nucl. Energy
,
42
(
1
), pp.
3
10
.10.1016/S0149-1970(03)80002-1
7.
Cappellino
,
C. A.
,
Roll
,
D. R.
, and
Wilson
,
G.
,
1992
, “
Design Considerations and Application Guidelines for Pumping Liquids With Entrained Gas Using Open Impeller Centrifugal Pumps
,”
Ninth International Pump Users Symposium
,
College Station, TX
, pp.
262
264
.
8.
Manzano Ruiz
,
J. J.
,
1980
, “
Experimental and Theoretical Study of Two-Phase Flow in Centrifugal Pumps
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
9.
Campo
,
A.
, and
Chisely
,
E. A.
,
2010
, “
Experimental Characterization of Two-Phase Flow Centrifugal Pumps
,”
ASME
Paper No. POWER2010-27048.10.1115/POWER2010-27048
10.
Tillack
,
P.
,
1998
, “
Förderverhalten Von Kreiselpumpen Bei Viskosen, Gasbeladenen Flüssigkeiten
,” Ph.D. thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
11.
Sauer
,
M.
,
2003
, “
Einfluss Der Zuströmung Auf Das Förderverhalten Von Kreiselpumpen Radialer Bauart Bei Flüssigkeits-/Gasförderung
,” Ph.D. thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
12.
Gamboa
,
J.
, and
Prado
,
M.
,
2011
, “
Review of Electrical-Submersible-Pump Surging Correlation and Models
,”
SPE Prod. Oper.
,
26
(
4
), pp.
314
324
.10.2118/140937-PA
13.
Verde
,
W. M.
,
Biazussi
,
J. L.
,
Sassim
,
N. A.
, and
Bannwart
,
A. C.
,
2017
, “
Experimental Study of Gas-Liquid Two-Phase Flow Patterns Within Centrifugal Pumps Impellers
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
37
51
.10.1016/j.expthermflusci.2017.02.019
14.
Zhu
,
J.
,
Guo
,
X.
,
Liang
,
F.
, and
Zhang
,
H. Q.
,
2017
, “
Experimental Study and Mechanistic Modeling of Pressure Surging in Electrical Submersible Pump
,”
J. Natural Gas Sci. Eng.
,
45
, pp.
625
636
.10.1016/j.jngse.2017.06.027
15.
Sekoguchi
,
K.
,
Takada
,
S.
, and
Kanemori
,
Y.
,
1984
, “
Study of Air-Water Two-Phase Centrifugal Pump by Means of Electric Resistivity Probe Technique for Void Fraction Measurement: 1st Report, Measurement of Void Fraction Distribution in a Radial Flow Impeller
,”
Bull. JSME
,
27
(
227
), pp.
931
938
.10.1299/jsme1958.27.931
16.
Shao
,
C.
,
Li
,
C.
, and
Zhou
,
J.
,
2018
, “
Experimental Investigation of Flow Patterns and External Performance of a Centrifugal Pump That Transports Gas-Liquid Two-Phase Mixtures
,”
Int. J. Heat Fluid Flow
,
71
, pp.
460
469
.10.1016/j.ijheatfluidflow.2018.05.011
17.
Mansour
,
M.
,
Kováts
,
P.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Experimental Investigations of a Two-Phase Gas/Liquid Flow in a Diverging Horizontal Channel
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
210
217
.10.1016/j.expthermflusci.2017.12.033
18.
Schiavello
,
B.
,
1986
, “
Two-Phase Flow Rotodynamic Pumps-Experiments and Design Criteria. Pumps Offshore
,” Worthing Ton Simson.
19.
Merry
,
H.
,
1976
, “
Effects of Two-Phase Liquid/Gas Flow on the Performance of Centrifugal Pumps
,”
IMechE Conference on Pumps Compressors Offshore Oil Gas
, Aberdeen, UK, p.
61
.
20.
Furukawa
,
A.
,
Shirasu
,
S.
, and
Sato
,
S.
,
1995
, “
Experimental Study of Gas-Liquid Two-Phase Flow Pumping Action of Centrifugal Impeller
,” American Society of Mechanical Engineers, New York.
21.
Serena
,
A.
,
2016
, “
A Multiphase Pump Experimental Analysis
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
22.
Sulzer Pumps
,
2013
,
Sulzer Centrifugal Pump Handbook
,
Elsevier
,
Amsterdam, The Netherlands
.
23.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin
.
24.
Hong
,
S. S.
,
Kim
,
D. J.
,
Kim
,
J. S.
,
Choi
,
C. H.
, and
Kim
,
J.
,
2013
, “
Study on Inducer and Impeller of a Centrifugal Pump for a Rocket Engine Turbopump
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
2
), pp.
311
319
.10.1177/0954406212449939
25.
Kim
,
C.
,
Kim
,
S.
,
Choi
,
C. H.
, and
Baek
,
J.
,
2017
, “
Effects of Inducer Tip Clearance on the Performance and Flow Characteristics of a Pump in a Turbopump
,”
Proc. Inst. Mech. Eng., Part A
,
231
(
5
), pp.
398
414
.10.1177/0957650917707656
26.
Guo
,
X.
,
Zhu
,
L.
,
Zhu
,
Z.
,
Cui
,
B.
, and
Li
,
Y.
,
2015
, “
Numerical and Experimental Investigations on the Cavitation Characteristics of a High-Speed Centrifugal Pump With a Splitter-Blade Inducer
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
259
267
.10.1007/s12206-014-1232-x
27.
Guo
,
X.
,
Zhu
,
Z.
,
Cui
,
B.
, and
Shi
,
G.
,
2016
, “
Effects of the Number of Inducer Blades on the Anti-Cavitation Characteristics and External Performance of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
7
), pp.
3173
3181
.10.1007/s12206-016-0510-1
28.
Li
,
X. J.
,
Pan
,
Z. Y.
,
Zhang
,
D. Q.
, and
Yuan
,
S. Q.
,
2012
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), p.
032058
.10.1088/1755-1315/15/3/032058
29.
d'Agostino
,
L.
,
Cervone
,
A.
,
Torre
,
L.
,
Pace
,
G.
,
Valentini
,
D.
, and
Pasini
,
A.
,
2017
, “
An Introduction to Flow-Induced Instabilities in Rocket Engine Inducers and Turbopumps
,”
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines
,
Springer
,
Berlin
, pp.
65
86
.
30.
Campos-Amezcua
,
R.
,
Khelladi
,
S.
,
Mazur-Czerwiec
,
Z.
,
Bakir
,
F.
,
Campos-Amezcua
,
A.
, and
Rey
,
R.
,
2013
, “
Numerical and Experimental Study of Cavitating Flow Through an Axial Inducer Considering Tip Clearance
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
8
), pp.
858
868
.10.1177/0957650913497357
31.
Pouffary
,
B.
,
Patella
,
R. F.
,
Reboud
,
J. L.
, and
Lambert
,
P. A.
,
2008
, “
Numerical Analysis of Cavitation Instabilities in Inducer Blade Cascade
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041302
.10.1115/1.2903823
32.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
33.
Mejri
,
I.
,
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2006
, “
Hub Shape Effects on the Inducers Performance Under Cavitation
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
3
), pp.
217
237
.10.1243/09576509JPE137
34.
Haghighi
,
M. H. S.
,
Mirghavami
,
S. M.
,
Chini
,
S. F.
, and
Riasi
,
A.
,
2019
, “
Developing a Method to Design and Simulation of a Very Low Head Axial Turbine With Adjustable Rotor Blades
,”
Renewable Energy
,
135
, pp.
266
276
.10.1016/j.renene.2018.12.024
35.
Cheng
,
X. R.
,
Liu
,
H.
,
Tu
,
Y. X.
,
Wei
,
Y. Q.
, and
Zhang
,
S. Y.
,
2018
, “
Effect of Inducer Sweepback on Cavitation Performance of Centrifugal Pump
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
163
, p.
012107
.10.1088/1755-1315/163/1/012107
36.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2018
, “
Increasing Inducer Stability and Suction Performance With a Stability Control Device
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011204
.10.1115/1.4040098
37.
Song
,
W. W.
,
Wei
,
L. C.
,
Fu
,
J.
,
Shi
,
J. W.
,
Yang
,
X. X.
, and
Xu
,
Q. Y.
,
2016
, “
Analysis and Control of Flow at Suction Connection in High-Speed Centrifugal Pump
,”
Adv. Mech. Eng.
,
9
(
1
), epub.10.1177/1687814016685293
38.
Oshima
,
M.
,
1967
, “
A Study on Suction Performance of a Centrifugal Pump With an Inducer
,”
Bull. JSME
,
10
(
42
), pp.
959
965
.10.1299/jsme1958.10.959
39.
Choi
,
Y. D.
,
Kurokawa
,
J.
, and
Imamura
,
H.
,
2007
, “
Suppression of Cavitation in Inducers by J-Grooves
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
15
22
.10.1115/1.2375126
40.
Thum
,
D.
,
2007
, “
Untersuchung Von Homogenisierungseinrichtungen Auf Das Förderverhalten Radialer Kreiselpumpen Bei Gasbeladenen Strömungen
,” Ph.D. thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
41.
Mansour
,
M.
,
Parikh
,
T.
,
Engel
,
S.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2019
, “
Investigation on the Influence of an Inducer on the Transport of Single and Two-Phase Air-Flows by Centrifugal Pumps
,”
48th Turbomachinery & 35th Pump Symposia, Houston, TX, Sept. 10–12.
42.
Sarkar
,
S.
, and
Balakrishnan
,
L.
,
1990
, “
Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer
,”
21st Fluid Dynamics, Plasma Dynamics and Lasers Conference
,
Seattle, WA
, p.
1465
.
43.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
ASME J. Fluid Mech.
,
227
, pp.
245
272
.10.1017/S0022112091000101
44.
Siemens
,
2018
, “STAR-CCM+ Version 13.02.013 User Guide,”
Siemens
,
Munich, Germany
.
45.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
46.
Mansour
,
M.
,
Liu
,
Z.
,
Janiga
,
G.
,
Nigam
,
K. D. P.
,
Sundmacher
,
K.
,
Thévenin
,
D.
, and
Zähringer
,
K.
,
2017
, “
Numerical Study of Liquid–Liquid Mixing in Helical Pipes
,”
Chem. Eng. Sci.
,
172
, pp.
250
261
.10.1016/j.ces.2017.06.015
47.
Mansour
,
M.
,
Khot
,
P.
,
Thévenin
,
D.
,
Nigam
,
K. D. P.
, and
Zähringer
,
K.
,
2018
, “
Optimal Reynolds Number for Liquid–Liquid Mixing in Helical Pipes
,”
Chem. Eng. Sci.
, in press.
You do not currently have access to this content.