Abstract

A numerical study was carried out to investigate the effects of a Gurney flap (GF) on the aerodynamics performance of the NACA 00 aerofoil and an associated three-blade rotor of a H-type Darrieus wind turbine. The flow fields around a single aerofoil and the vertical axis wind turbine (VAWT) rotor are studied using unsteady Reynolds-averaged Navier–Stokes equations (URANS). The height of GF ranges from 1% to 5% of the aerofoil chord length. The results show that the GF can increase the lift and lift-to-drag ratio of the aerofoil as associated with the generation of additional vortices near the aerofoil trailing edge. As a result, adding a GF can significantly improve the power coefficient of the VAWT at low tip speed ratio (TSR), where it typically gives low power production. The causing mechanism is discussed in detail, pointing to flow separation and dynamic stall delay.

References

1.
Wasala
,
S. H.
,
Storey
,
R. C.
,
Norris
,
S. E.
, and
Cater
,
J. E.
,
2015
, “
Aeroacoustic Noise Prediction for Wind Turbines Using Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
17
29
.10.1016/j.jweia.2015.05.011
2.
Zhu
,
H.
,
Hao
,
W.
,
Li
,
C.
, and
Ding
,
Q.
,
2018
, “
Simulation on Flow Control Strategy of Synthetic Jet in an Vertical Axis Wind Turbine
,”
Aerosp. Sci. Technol.
,
77
, pp.
439
448
.10.1016/j.ast.2018.03.012
3.
Bedon
,
G.
,
Castelli
,
M. R.
, and
Benini
,
E.
,
2014
, “
Proposal for an Innovative Chord Distribution in the Troposkien Vertical Axis Wind Turbine Concept
,”
Energy
,
66
, pp.
689
698
.10.1016/j.energy.2014.01.004
4.
Zhu
,
H.
,
Hao
,
W.
,
Li
,
C.
, and
Ding
,
Q.
,
2019
, “
Numerical Study of Effect of Solidity on Vertical Axis Wind Turbine With Gurney Flap
,”
J. Wind Eng. Ind. Aerodyn.
,
186
, pp.
17
31
.10.1016/j.jweia.2018.12.016
5.
Islam
,
M.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2013
, “
Progress and Recent Trends of Wind Energy Technology
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
456
468
.10.1016/j.rser.2013.01.007
6.
Bhargav
,
M.
,
Kishore
,
V. R.
, and
Laxman
,
V.
,
2016
, “
Influence of Fluctuating Wind Conditions on Vertical Axis Wind Turbine Using a Three Dimensional CFD Model
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
98
108
.10.1016/j.jweia.2016.10.001
7.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2018
, “
Parametric Study of the Dual Vertical Axis Wind Turbine Using CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
244
255
.10.1016/j.jweia.2017.11.007
8.
Bedon
,
G.
,
Castelli
,
M. R.
, and
Benini
,
E.
,
2013
, “
Optimization of a Darrieus Vertical-Axis Wind Turbine Using Blade Element–Momentum Theory and Evolutionary Algorithm
,”
Renewable Energy
,
59
, pp.
184
192
.10.1016/j.renene.2013.03.023
9.
Ismail
,
M. F.
, and
Vijayaraghavan
,
K.
,
2015
, “
The Effects of Aerofoil Profile Modification on a Vertical Axis Wind Turbine Performance
,”
Energy
,
80
, pp.
20
31
.10.1016/j.energy.2014.11.034
10.
Yang
,
Y.
,
Li
,
C.
,
Zhang
,
W.
,
Guo
,
X.
, and
Yuan
,
Q.
,
2017
, “
Investigation on Aerodynamics and Active Flow Control of a Vertical Axis Wind Turbine With Flapped Airfoil
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1645
1655
.10.1007/s12206-017-0312-0
11.
Liebeck
,
R. H.
,
1978
, “
Design of Subsonic Airfoils for High Lift
,”
J. Aircr.
,
15
(
9
), pp.
547
561
.10.2514/3.58406
12.
Zhang
,
P.
,
Liu
,
A.
, and
Wang
,
J.
,
2009
, “
Aerodynamic Modification of NACA 0012 Airfoil by Trailing-Edge Plasma Gurney Flap
,”
AIAA J.
,
47
(
10
), pp.
2467
2474
.10.2514/1.43379
13.
Jang
,
C. S.
,
Ross
,
J. C.
, and
Cummings
,
R. M.
,
1998
, “
Numerical Investigation of an Airfoil With a Gurney Flap
,”
Aircr. Des.
,
1
(
2
), pp.
75
88
.10.1016/S1369-8869(98)00010-X
14.
Wang
,
J.
,
Li
,
Y.
, and
Choi
,
K.-S.
,
2008
, “
Gurney Flap–Lift Enhancement, Mechanisms and Applications
,”
Prog. Aerosp. Sci.
,
44
(
1
), pp.
22
47
.10.1016/j.paerosci.2007.10.001
15.
Jeffrey
,
D.
,
Zhang
,
X.
, and
Hurst
,
D. W.
,
2000
, “
Aerodynamics of Gurney Flaps on a Single-Element High-Lift Wing
,”
J. Aircr.
,
37
(
2
), pp.
295
301
.10.2514/2.2593
16.
Storms
,
B. L.
, and
Jang
,
C. S.
,
1994
, “
Lift Enhancement of an Airfoil Using a Gurney Flap and Vortex Generators
,”
J. Aircr.
,
31
(
3
), pp.
542
547
.10.2514/3.46528
17.
Di Rosa
,
D.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2019
, “
A Preliminary Assessment of the Impact of Gurney Flaps on the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
,” Colloquium on Research and Innovation on Wind Energy on Exploitation in Urban Environment Colloquium, Wind Energy Exploitation in Urban Environment. TUrbWind 2018. Research Topics in Wind Energy, Vol.
8
, L. Battisti, ed., Springer, Cham, pp.
1
19
.
18.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Di Rosa
,
D.
, and
Ferrara
,
G.
,
2019
, “
On the Use of Gurney Flaps for the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
184
, pp.
402
415
.10.1016/j.enconman.2019.01.068
19.
Mohamed
,
M.
,
Ali
,
A.
, and
Hafiz
,
A.
,
2015
, “
CFD Analysis for H-Rotor Darrieus Turbine as a Low Speed Wind Energy Converter
,”
Eng. Sci. Technol., Int. J.
,
18
(
1
), pp.
1
13
.10.1016/j.jestch.2014.08.002
20.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.10.1016/j.renene.2015.06.048
21.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
A Computational Procedure to Define the Incidence Angle on Airfoils Rotating Around an Axis Orthogonal to Flow Direction
,”
Energy Convers. Manage.
,
126
, pp.
790
798
.10.1016/j.enconman.2016.08.010
22.
Mohamed
,
M.
,
2012
, “
Performance Investigation of H-Rotor Darrieus Turbine With New Airfoil Shapes
,”
Energy
,
47
(
1
), pp.
522
530
.10.1016/j.energy.2012.08.044
23.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
, Orlando, FL, July 6–9, p.
2906
.10.2514/6.1993-2906
24.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND-80-2114.
25.
Richez
,
F.
,
Mary
,
I.
,
Gleize
,
V.
, and
Basdevant
,
C.
,
2008
, “
Zonal RANS/LES Coupling Simulation of a Transitional and Separated Flow Around an Airfoil Near Stall
,”
Theor. Comput. Fluid Dyn.
,
22
(
3–4
), pp.
305
315
.10.1007/s00162-007-0068-8
26.
Yousefi
,
K.
,
Saleh
,
R.
, and
Zahedi
,
P.
,
2014
, “
Numerical Study of Blowing and Suction Slot Geometry Optimization on NACA 0012 Airfoil
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1297
1310
.10.1007/s12206-014-0119-1
27.
Giguere
,
P.
,
Lemay
,
J.
, and
Dumas
,
G.
,
1995
, “
Gurney Flap Effects and Scaling for Low-Speed Airfoils
,”
13th Applied Aerodynamics Conference
,
San Diego, CA
,
June 19–22
, p.
1881
.
28.
Li
,
Y.
,
Wang
,
J.
, and
Zhang
,
P.
,
2002
, “
Effects of Gurney Flaps on a NACA 0012 Airfoil
,”
Flow, Turbul. Combust.
,
68
(
1
), p.
27
.10.1023/A:1015679408150
29.
Shen
,
X.
,
Avital
,
E.
,
Paul
,
G.
,
Rezaienia
,
M. A.
,
Wen
,
P.
, and
Korakianitis
,
T.
,
2016
, “
Experimental Study of Surface Curvature Effects on Aerodynamic Performance of a Low Reynolds Number Airfoil for Use in Small Wind Turbines
,”
J. Renewable Sustainable Energy
,
8
(
5
), p.
053303
.10.1063/1.4963236
30.
Yu
,
T.
,
Wang
,
J.
, and
Zhang
,
P.
,
2011
, “
Numerical Simulation of Gurney Flap on RAE-2822 Supercritical Airfoil
,”
J. Aircr.
,
48
(
5
), pp.
1565
1575
.10.2514/1.C031285
You do not currently have access to this content.