In this work, the influence of nozzle shape on microfluidic ink jet breakup is investigated. First, an industrial ink used in continuous inkjet (CIJ) printing devices is selected. Ink rheological properties are measured to ensure an apparent Newtonian behavior and a constant surface tension. Then, breakup lengths and shapes are observed on a wide range of disturbance amplitude for four different nozzles. Later on, ink breakup behaviors are compared to the linear theory. Finally, these results are discussed using numerical simulations to highlight the influence of the velocity profiles at the nozzle outlet. Using such computations, a simple approach is derived to accurately predict the breakup length for industrial CIJ nozzles.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
de Gans
, B.-J.
, Duineveld
, P. C.
, and Schubert
, U. S.
, 2004
, “Inkjet Printing of Polymers: State of the Art and Future Developments
,” Adv. Mater.
, 16
(3
), pp. 203
–213
.2.
Hoath
, S. D.
, 2016
, Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets
, Wiley
, Hoboken, NJ
.3.
Rayleigh
, L.
, 1878
, “On the Instability of Jets
,” Proc. London Math. Soc.
, 1
(1
), pp. 4
–13
.4.
Eggers
, J.
, and Villermaux
, E.
, 2008
, “Physics of Liquid Jets
,” Rep. Prog. Phys.
, 71
(3
), p. 036601
.5.
Savart
, F.
, 1833
, “Mémoire sur la Constitution des Veines Liquides Lancées par des Orifices Circulaires en Mince Paroi
,” Ann. Chim. Phys
, 53
(337
), p. 1833
.6.
Rayleigh
, L.
, 1892
, “Xvi. On the Instability of a Cylinder of Viscous Liquid Under Capillary Force
,” London, Edinburgh, Dublin Philos. Mag. J. Sci.
, 34
(207
), pp. 145
–154
.7.
Chandrasekhar
, S.
, 2013
, Hydrodynamic and Hydromagnetic Stability
, Courier Corporation
, Mineola, NY
.8.
Tomotika
, S.
, 1935
, “On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,” Proc. R. Soc. London. Ser. A, Math. Phys. Sci.
, 150
(870
), pp. 322
–337
.9.
Keller
, J. B.
, Rubinow
, S.
, and Tu
, Y.
, 1973
, “Spatial Instability of a Jet
,” Phys. Fluids
, 16
(12
), pp. 2052
–2055
.10.
Yuen
, M.-C.
, 1968
, “Non-Linear Capillary Instability of a Liquid Jet
,” J. Fluid Mech.
, 33
(1
), pp. 151
–163
.11.
Pimbley
, W.
, and Lee
, H.
, 1977
, “Satellite Droplet Formation in a Liquid Jet
,” IBM J. Res. Dev.
, 21
(1
), pp. 21
–30
.12.
Durst
, F.
, Ray
, S.
, Ünsal
, B.
, and Bayoumi
, O.
, 2005
, “The Development Lengths of Laminar Pipe and Channel Flows
,” ASME J. Fluids Eng.
, 127
(6
), pp. 1154
–1160
.13.
Castrejón-Pita
, J.
, Hoath
, S.
, and Hutchings
, I.
, 2012
, “Velocity Profiles in a Cylindrical Liquid Jet by Reconstructed Velocimetry
,” ASME J. Fluids. Eng.
, 134
(1
), p. 011201
.14.
McCarthy
, M.
, and Molloy
, N.
, 1974
, “Review of Stability of Liquid Jets and the Influence of Nozzle Design
,” Chem. Eng. J.
, 7
(1
), pp. 1
–20
.15.
Levanoni
, M.
, 1977
, “Study of Fluid Flow Through Scaled-Up Ink Jet Nozzles
,” IBM J. Res. Dev.
, 21
(1
), pp. 56
–68
.16.
Lopez
, B.
, Soucemarianadin
, A.
, and Attané
, P.
, 1999
, “Break-Up of Continuous Liquid Jets: Effect of Nozzle Geometry
,” J. Imaging Sci. Technol.
, 43
(2
), pp. 145
–152
.http://www.ingentaconnect.com/contentone/ist/jist/1999/00000043/00000002/art0000917.
Leib
, S.
, and Goldstein
, M.
, 1986
, “The Generation of Capillary Instabilities on a Liquid Jet
,” J. Fluid Mech.
, 168
, pp. 479
–500
.18.
Leib
, S.
, and Goldstein
, M.
, 1986
, “Convective and Absolute Instability of a Viscous Liquid Jet
,” Phys. Fluids (1958–1988)
, 29
(4
), pp. 952
–954
.19.
García
, F.
, González
, H.
, Castrejón-Pita
, J.
, and Castrejón-Pita
, A.
, 2014
, “The Breakup Length of Harmonically Stimulated Capillary Jets
,” Appl. Phys. Lett.
, 105
(9
), p. 094104
.20.
Keshavarz
, B.
, Sharma
, V.
, Houze
, E. C.
, Koerner
, M. R.
, Moore
, J. R.
, Cotts
, P. M.
, Threlfall-Holmes
, P.
, and McKinley
, G. H.
, 2015
, “Studying the Effects of Elongational Properties on Atomization of Weakly Viscoelastic Solutions Using Rayleigh Ohnesorge Jetting Extensional Rheometry (Rojer)
,” J. Non-Newtonian Fluid Mech.
, 222
, pp. 171
–189
.21.
Ashgriz
, N.
, and Mashayek
, F.
, 1995
, “Temporal Analysis of Capillary Jet Breakup
,” J. Fluid Mech.
, 291
, pp. 163
–190
.22.
Kalaaji
, A.
, Lopez
, B.
, Attane
, P.
, and Soucemarianadin
, A.
, 2003
, “Breakup Length of Forced Liquid Jets
,” Phys. Fluids (1994-Present)
, 15
(9
), pp. 2469
–2479
.23.
McIlroy
, C.
, 2014
, “Complex Inkjets: Particles, Polymers and Non-Linear Driving
,” Ph.D. thesis
, University of Leeds
, Leeds, UK
.http://etheses.whiterose.ac.uk/7732/1/ClaireThesis.pdf24.
Pimbley
, W.
, 1976
, “Drop Formation From a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem
,” IBM J. Res. Dev.
, 20
(2
), pp. 148
–156
.25.
Lee
, H.
, 1974
, “Drop Formation in a Liquid Jet
,” IBM J. Res. Dev.
, 18
(4
), pp. 364
–369
.26.
Hirt
, C. W.
, and Nichols
, B. D.
, 1981
, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Phys.
, 39
(1
), pp. 201
–225
.27.
Rupe
, J. H.
, 1962
, On the Dynamic Characteristics of Free-Liquid Jets and a Partial Correlation With Orifice Geometry
, Jet Propulsion Laboratory, California Institute of Technology
, Pasadena, CA
.28.
Petit
, L.
, Hulin
, J.-P.
, and Guyon
, É.
, 2012
, Hydrodynamique Physique
, 3rd ed., EDP Sciences
, Les Ulis, France
.Copyright © 2018 by ASME
You do not currently have access to this content.