In this work, the influence of nozzle shape on microfluidic ink jet breakup is investigated. First, an industrial ink used in continuous inkjet (CIJ) printing devices is selected. Ink rheological properties are measured to ensure an apparent Newtonian behavior and a constant surface tension. Then, breakup lengths and shapes are observed on a wide range of disturbance amplitude for four different nozzles. Later on, ink breakup behaviors are compared to the linear theory. Finally, these results are discussed using numerical simulations to highlight the influence of the velocity profiles at the nozzle outlet. Using such computations, a simple approach is derived to accurately predict the breakup length for industrial CIJ nozzles.

References

1.
de Gans
,
B.-J.
,
Duineveld
,
P. C.
, and
Schubert
,
U. S.
,
2004
, “
Inkjet Printing of Polymers: State of the Art and Future Developments
,”
Adv. Mater.
,
16
(
3
), pp.
203
213
.
2.
Hoath
,
S. D.
,
2016
,
Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets
,
Wiley
,
Hoboken, NJ
.
3.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
,
1
(
1
), pp.
4
13
.
4.
Eggers
,
J.
, and
Villermaux
,
E.
,
2008
, “
Physics of Liquid Jets
,”
Rep. Prog. Phys.
,
71
(
3
), p.
036601
.
5.
Savart
,
F.
,
1833
, “
Mémoire sur la Constitution des Veines Liquides Lancées par des Orifices Circulaires en Mince Paroi
,”
Ann. Chim. Phys
,
53
(
337
), p.
1833
.
6.
Rayleigh
,
L.
,
1892
, “
Xvi. On the Instability of a Cylinder of Viscous Liquid Under Capillary Force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
207
), pp.
145
154
.
7.
Chandrasekhar
,
S.
,
2013
,
Hydrodynamic and Hydromagnetic Stability
,
Courier Corporation
,
Mineola, NY
.
8.
Tomotika
,
S.
,
1935
, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,”
Proc. R. Soc. London. Ser. A, Math. Phys. Sci.
,
150
(
870
), pp.
322
337
.
9.
Keller
,
J. B.
,
Rubinow
,
S.
, and
Tu
,
Y.
,
1973
, “
Spatial Instability of a Jet
,”
Phys. Fluids
,
16
(
12
), pp.
2052
2055
.
10.
Yuen
,
M.-C.
,
1968
, “
Non-Linear Capillary Instability of a Liquid Jet
,”
J. Fluid Mech.
,
33
(
1
), pp.
151
163
.
11.
Pimbley
,
W.
, and
Lee
,
H.
,
1977
, “
Satellite Droplet Formation in a Liquid Jet
,”
IBM J. Res. Dev.
,
21
(
1
), pp.
21
30
.
12.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.
13.
Castrejón-Pita
,
J.
,
Hoath
,
S.
, and
Hutchings
,
I.
,
2012
, “
Velocity Profiles in a Cylindrical Liquid Jet by Reconstructed Velocimetry
,”
ASME J. Fluids. Eng.
,
134
(
1
), p.
011201
.
14.
McCarthy
,
M.
, and
Molloy
,
N.
,
1974
, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
,
7
(
1
), pp.
1
20
.
15.
Levanoni
,
M.
,
1977
, “
Study of Fluid Flow Through Scaled-Up Ink Jet Nozzles
,”
IBM J. Res. Dev.
,
21
(
1
), pp.
56
68
.
16.
Lopez
,
B.
,
Soucemarianadin
,
A.
, and
Attané
,
P.
,
1999
, “
Break-Up of Continuous Liquid Jets: Effect of Nozzle Geometry
,”
J. Imaging Sci. Technol.
,
43
(
2
), pp.
145
152
.http://www.ingentaconnect.com/contentone/ist/jist/1999/00000043/00000002/art00009
17.
Leib
,
S.
, and
Goldstein
,
M.
,
1986
, “
The Generation of Capillary Instabilities on a Liquid Jet
,”
J. Fluid Mech.
,
168
, pp.
479
500
.
18.
Leib
,
S.
, and
Goldstein
,
M.
,
1986
, “
Convective and Absolute Instability of a Viscous Liquid Jet
,”
Phys. Fluids (1958–1988)
,
29
(
4
), pp.
952
954
.
19.
García
,
F.
,
González
,
H.
,
Castrejón-Pita
,
J.
, and
Castrejón-Pita
,
A.
,
2014
, “
The Breakup Length of Harmonically Stimulated Capillary Jets
,”
Appl. Phys. Lett.
,
105
(
9
), p.
094104
.
20.
Keshavarz
,
B.
,
Sharma
,
V.
,
Houze
,
E. C.
,
Koerner
,
M. R.
,
Moore
,
J. R.
,
Cotts
,
P. M.
,
Threlfall-Holmes
,
P.
, and
McKinley
,
G. H.
,
2015
, “
Studying the Effects of Elongational Properties on Atomization of Weakly Viscoelastic Solutions Using Rayleigh Ohnesorge Jetting Extensional Rheometry (Rojer)
,”
J. Non-Newtonian Fluid Mech.
,
222
, pp.
171
189
.
21.
Ashgriz
,
N.
, and
Mashayek
,
F.
,
1995
, “
Temporal Analysis of Capillary Jet Breakup
,”
J. Fluid Mech.
,
291
, pp.
163
190
.
22.
Kalaaji
,
A.
,
Lopez
,
B.
,
Attane
,
P.
, and
Soucemarianadin
,
A.
,
2003
, “
Breakup Length of Forced Liquid Jets
,”
Phys. Fluids (1994-Present)
,
15
(
9
), pp.
2469
2479
.
23.
McIlroy
,
C.
,
2014
, “
Complex Inkjets: Particles, Polymers and Non-Linear Driving
,”
Ph.D. thesis
,
University of Leeds
,
Leeds, UK
.http://etheses.whiterose.ac.uk/7732/1/ClaireThesis.pdf
24.
Pimbley
,
W.
,
1976
, “
Drop Formation From a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem
,”
IBM J. Res. Dev.
,
20
(
2
), pp.
148
156
.
25.
Lee
,
H.
,
1974
, “
Drop Formation in a Liquid Jet
,”
IBM J. Res. Dev.
,
18
(
4
), pp.
364
369
.
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
27.
Rupe
,
J. H.
,
1962
,
On the Dynamic Characteristics of Free-Liquid Jets and a Partial Correlation With Orifice Geometry
,
Jet Propulsion Laboratory, California Institute of Technology
,
Pasadena, CA
.
28.
Petit
,
L.
,
Hulin
,
J.-P.
, and
Guyon
,
É.
,
2012
,
Hydrodynamique Physique
, 3rd ed.,
EDP Sciences
,
Les Ulis, France
.
You do not currently have access to this content.