Properly modeling cavitating flow in a centrifugal pump is a very important issue for prediction of cavitation performance in pump hydraulic design optimization and application. As a first trial, the issue is explored by using computational fluid dynamics (CFD) method plus the full cavitation model herein. To secure a smoothed head-net positive suction head available (NPSHa) curve, several critical techniques are adopted. The cavitation model is validated against the experimental data in literature. The predicted net positive suction head required (NPSHr) correction factor for viscosity oils is compared with the existing measured data and empirical correlation curve, and the factor is correlated to impeller Reynolds number quantitatively. A useful relation between the pump head coefficient and vapor plus noncondensable gas-to-liquid volume ratio in the impeller is obtained. Vapor and noncondensable gas concentration profiles are illustrated in the impeller, and a “pseudocavitation” effect is confirmed as NPSHa is reduced. The effects of exit blade angle on NPSHr are presented, and the contributions of liquid viscosity and noncondensable gas concentration to the increase of NPSHr at a higher viscosity are identified.

References

1.
Aizenshtein
,
M. D.
,
1957
,
Centrifugal Pumps for the Petroleum Industry
,
Gostoptekhizdat
,
Moscow
.
2.
Cao
,
G. J.
,
Wu
,
Y. L.
,
Liu
,
S. H.
,
Chen
,
G.
, and
Fu
,
S. H.
,
2006
, “
Experiment Studies on Cavitation Characteristics of the Centrifugal Oil Pump for Pumping Viscous Liquid
,”
J. Eng. Thermophys.
,
27
(
5
), pp.
784
786
.
3.
Cao
,
G. J.
,
Wu
,
Y. L.
,
Liu
,
S. H.
,
Chen
,
G.
, and
Fu
,
S. H.
,
2008
, “
Influence of the Shaft Speed to the Centrifugal Oil Pump Cavitation Characteristics and Conversion Study
,”
J. Eng. Thermophys.
,
29
(
1
), pp.
65
67
.
4.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
,
Oxford
.
5.
Hirschi
,
R.
,
Dupont
,
P.
,
Avellan
,
F.
,
Favre
,
J. N.
,
Guelich
,
J. F.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.
6.
Wursthorn
,
S.
, and
Schnerr
,
G. H.
,
2001
, “
Numerical Investigation of Performance Losses in a Centrifugal Pump Due to Cavitation
,”
ZAMM
,
81
(Suppl. S
3
), pp.
S579
S580
.
7.
Coutier-Delgosha
,
O.
,
Patella
,
R. R.
,
Rebound
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2004
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.
8.
Pouffary
,
B.
,
Patella
,
R. F.
,
Rebound
,
J. L.
, and
Lambert
,
R. A.
,
2008
, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061301
.
9.
Pouffary
,
B.
,
Patella
,
R. F.
,
Reboud
,
J. L.
, and
Lambert
,
P. A.
,
2008
, “
Numerical Analysis of Cavitation Instabilities in Inducer Blade Cascade
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041302
.
10.
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
,
Bois
,
G.
, and
Leroux
,
J. B.
,
2012
, “
Influence of the Blade Number on Inducer Cavitating Behavior
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081304
.
11.
Li
,
J.
,
Liu
,
L. J.
, and
Feng
,
Z. P.
,
2006
, “
Two-Dimensional Analysis of Cavitating Flow in a Centrifugal Pump Using a Single-Phase Reynolds Averaged Navier-Stokes Solver and Cavitation Model
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
7
), pp.
783
791
.
12.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.
13.
Lindau
,
J. W.
,
Pena
,
C.
,
Baker
,
W. J.
,
Dreyer
,
J. J.
,
Moody
,
W. L.
,
Kunz
,
R. F.
, and
Paterson
,
E. G.
,
2012
, “
Modeling of Cavitating Flow Through Waterjet Propulsors
,”
Int. J. Rotating Mach.
,
2012
, p.
716392
.
14.
Nohmi
,
M.
,
Goto
,
A.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2003
, “
Cavitation CFD in a Centrifugal Pump
,”
5th International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, pp. 1–7.
15.
Liu
,
S. H.
,
Nishi
,
M.
, and
Yoshida
,
K.
,
2001
, “
Impeller Geometry Suitable for Mini Turbo-Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
500
506
.
16.
Athavale
,
M. M.
,
Li
,
H. Y.
,
Jiang
,
Y.
, and
Singhal
,
A.
,
2002
, “
Application of the Full Cavitation Model to Pumps and Inducers
,”
Int. J. Rotating Mach.
,
8
(
1
), pp.
45
56
.
17.
Zhuang
,
B. T.
,
Luo
,
X. W.
,
Zhu
,
L.
,
Wang
,
X.
, and
Xu
,
H. Y.
,
2011
, “
Cavitation in a Shaft-Less Double Suction Centrifugal Miniature Pump
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
191
198
.
18.
Bonaiuti
,
D.
,
Zangeneh
,
M.
,
Aartojarvi
,
R.
, and
Eriksson
,
J.
,
2011
, “
Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031104
.
19.
Kim
,
M. J.
,
Jin
,
H. B.
, and
Chung
,
W. J.
,
2012
, “
A Study on Prediction of Cavitation for Centrifugal Pump
,”
World Acad. Sci., Eng. Technol.
,
6
(
12
), pp.
612
617
.
20.
Stuparu
,
A.
,
Muntean
,
S.
,
Susan-Resiga
,
R.
, and
Anton
,
L.
,
2009
, “
Numerical Investigation of the Cavitational Behavior of a Storage Pump
,”
3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Brno, Czech Republic, Oct. 14–16, pp. 1–10.
21.
Stuparu
,
A.
,
Susan-Resiga
,
R.
,
Anton
,
L.
, and
Muntean
,
S.
,
2011
, “
A New Approach in Numerical Assessment of Cavitation Behavior of Centrifugal Pumps
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
104
113
.
22.
Dupont
,
P.
, and
Okamura
,
T.
,
2003
, “
Cavitating Flow Calculations in Industry
,”
Int. J. Rotating Mach.
,
9
(
3
), pp.
163
170
.
23.
Tang
,
X. L.
,
Bian
,
L. Y.
,
Wang
,
F. J.
,
Li
,
X. Q.
, and
Hao
,
M.
,
2013
, “
Numerical Investigations on Cavitating Flows With Thermodynamic Effects in a Diffuser-Type Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
27
(
6
), pp.
1655
1664
.
24.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021302
.
25.
Li
,
W. G.
,
2011
, “
Effect of Exit Blade Angle, Viscosity and Roughness in Centrifugal Pumps Investigated by CFD Computation
,”
TASK Q.
,
15
(
1
), pp.
21
41
.
26.
Pisarenco
,
M.
,
van der Linden
,
B.
,
Tijsseling
,
A.
,
Ory
,
E.
, and
Dam
,
J.
,
2011
, “
Friction Factor Estimation for Turbulent Flows in Corrugated Pipes With Rough Walls
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
1
), p.
011101
.
27.
FLUENT, Inc.
,
2005
,
FLUENT 6.2 User’s Guide
, Vols. 1 and 2,
Lebanon, NH
.
28.
Nakamura
,
K.
, and
Someya
,
T.
,
1980
, “
Investigation into the Tensile Strength of Real Liquids: The Application to Lubricant Oil
,”
Trans. JSME
, Ser. B,
46
(
405
), pp.
910
918
.
29.
Washio
,
S.
,
Takahashi
,
S.
,
Uda
,
Y.
, and
Sunahara
,
T.
,
2002
, “
Study on Cavitation Inception in Hydraulic Oil Flow Through a Long Two-Dimensional Constriction
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
4
), pp.
373
386
.
30.
Ishihara
,
T.
,
1982
, “
Cavitation in Hydraulic Oil
,”
Trans. JSME, Ser. B
,
48
(
434
), pp.
1829
1832
.
31.
Merkle
,
C. L.
,
Feng
,
J. Z.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
3rd International Symposium on Cavitation
, Grenoble, France, pp.
307
311
.
32.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
4th International Conference on Multiphase Flow
, New Orleans, LA, pp. 1–8.
33.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T. A.
,
2004
, “
Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
5th International Conference on Multiphase Flow
, Yokohama, Japan, pp. 152–158.
34.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
35.
Li
,
W. G.
,
2014
, “
Mechanism for Onset of Sudden-Rising Head Effect in Centrifugal Pump When Handling Viscous Oils
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
074501
.
36.
Hofmann
,
M.
,
Stoffel
,
B.
,
Firedrichs
,
J.
, and
Kosyna
,
G.
,
2001
, “
Similarities and Geometrical Effects on Rotating Cavitation in Two Scaled Centrifugal Pumps
,”
4th International Symposium on Cavitation
, Pasadena, CA, June 20–23, pp. 215–223.
37.
Hofmann
,
M.
,
Stoffel
,
B.
,
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2001
, “
Experimental and Numerical Studies on a Centrifugal Pump With 2D-Curved Blades in Cavitating Conditions
,”
4th International Symposium on Cavitation
, Pasadena, CA, June 20–23, pp. 450–458.
38.
Li
,
W. G.
,
2014
, “
Validating Full Cavitation Model With an Experimental Centrifugal Pump
,”
TASK Q.
,
18
(
1
), pp.
83
102
.
39.
Minami
,
S.
,
Kawaguchi
,
K.
, and
Homma
,
T.
,
1960
, “
Experimental Study on Cavitation in Centrifugal Pump Impellers
,”
Bull. JSME
,
3
(
9
), pp.
19
29
.
40.
Kasai
,
T.
, and
Takamatu
,
Y.
,
1963
, “
Experimental Research for Suction Performance and Its Similarity of Centrifugal Pumps
,”
Trans. JSME, Ser. 2
,
29
(
204
), pp.
1308
1317
.
41.
Palgrave
,
R.
, and
Cooper
,
P.
,
1987
, “
Visual Studies of Cavitation in Pumping Machinery
,”
3rd International Pump User Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, pp.
61
68
.
42.
Hirotsu
,
M.
, and
Kang
,
C. M.
,
1968
, “
A Research on Open Type Impeller Pump
,”
Mem. Inst. Sci. Technol.
, Meiji Univ.,
7
(1), pp.
79
107
.
43.
Murakami
,
M.
,
Minemura
,
K.
, and
Takimoto
,
M.
,
1980
, “
Effects of Entrained Air on the Performance of Centrifugal Pumps Under Cavitating Conditions
,”
Bull. JSME
,
23
(
183
), pp.
1435
1442
.
44.
Daily
,
J. W.
, and
Johnson
, V
. E.
,
1956
, “
Turbulence and Boundary Layer on Cavitation Inception for Gas Nuclei
,”
Trans. ASME
,
78
(8), pp.
1695
1706
.
45.
Li
,
W. G.
,
2012
, “
Effects of Blade Exit Angle and Liquid Viscosity on Unsteady Flow in Centrifugal Pumps
,”
Proc. Inst. Mech. Eng.
, Part A,
226
(
4
), pp.
580
599
.
46.
Yuan
,
W.
,
Sauer
,
J.
,
Günter
,
H.
, and
Schnerr
,
G. H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
Mec. Ind.
,
2
(
5
), pp.
383
394
.
47.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.
48.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.
49.
Goncalves
,
E.
,
2011
, “
Numerical Study of Unsteady Turbulent Cavitating Flows
,”
Eur. J. Mech. B-Fluids
,
30
(
1
), pp.
26
40
.
50.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2013
, “
Investigation of Three-Dimensional Effects on a Cavitating Venturi Flow
,”
Int. J. Heat Fluid Flow
,
44
(
1
), pp.
576
595
.
51.
Zhou
,
L. J.
, and
Wang
,
Z. W.
,
2007
, “
Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG k - ɛ Model
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011302
.
52.
Yang
,
J.
,
Zhou
,
L. J.
, and
Wang
,
Z. W.
,
2011
, “
Numerical Simulation of Three-Dimensional Cavitation Around a Hydrofoil
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081301
.
53.
Luo
,
X. W.
,
Ji
,
B.
,
Peng
,
X. X.
,
Xu
,
H. Y.
, and
Nishi
,
M.
,
2012
, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041202
.
54.
Ji
,
B.
,
Luo
,
X. W.
,
Wu
,
Y. L.
,
Peng
,
X. X.
, and
Duan
,
Y. L.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
(
1
), pp.
33
43
.
55.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
, and
Wu
,
Y. L.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation-Vortex Interaction
,”
Ocean Eng.
,
87
(
1
), pp.
64
77
.
56.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G. Y.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
(
1
), pp.
113
124
.
57.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X. X.
, and
Wu
,
Y. L.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
(
1
), pp.
12
134
.
You do not currently have access to this content.