The flow through turbopumps is characterized by highly unsteady phenomena at part load conditions, involving large separation and generation of vortical structures. This behavior is strongly dependent on the interaction between rotating and steady parts, which is significantly modified, compared to the one at the design flow rate. Therefore, at off-design conditions, eddy-resolving computations are more suitable to analyze the complex physics occurring inside turbomachinery channels. In this work the large eddy simulation (LES), coupled with an immersed-boundary (IB) method, is utilized to study a mixed-flow pump at a reduced flow rate, equivalent to 40% of the nominal one. The present approach has been already validated in a previous study, where a satisfactory agreement with two-dimensional (2D) particle image velocimetry (PIV) experiments has been shown at design conditions. In this paper a comparison with the LES results at the optimal flow rate is also proposed, in order to understand the important modifications of the flow occurring at part loads.

References

1.
Zhou
,
W.
,
Zhao
,
Z.
,
Lee
,
T. S.
, and
Winoto
,
S. H.
,
2003
, “
Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics
,”
Int. J. Rotating Mach.
,
9
(
1
), pp.
49
61
.10.1155/S1023621X0300006X
2.
González
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
937
946
.10.1115/1.2234782
3.
Cheah
,
K. W.
,
Lee
,
T. S.
,
Winoto
,
S. H.
, and
Zhao
,
Z. M.
,
2007
, “
Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions
,”
Int. J. Rotating Mach.
,
2007
, p.
83641
.10.1155/2007/83641
4.
Feng
,
J.
,
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2009
, “
Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD
,”
J. Visualization
,
12
(
1
), pp.
65
72
.10.1007/BF03181944
5.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.10.1016/j.compfluid.2010.01.001
6.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negrão
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2013
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.10.1115/1.4023956
7.
Gao
,
Z.
,
Zhu
,
W.
,
Lu
,
L.
,
Deng
,
J.
,
Zhang
,
J.
, and
Wuang
,
F.
,
2014
, “
Numerical and Experimental Study of Unsteady Flow in a Large Centrifugal Pump With Stay Vanes
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071101
.10.1115/1.4026477
8.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.10.1115/1.1374213
9.
Wuibaut
,
G.
,
Bois
,
G.
,
Dupont
,
P.
,
Caignaert
,
G.
, and
Stanislas
,
M.
,
2002
, “
PIV Measurements in the Impeller and the Vaneless Diffuser of a Radial Flow Pump in Design and Off-Design Operating Conditions
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
791
797
.10.1115/1.1486473
10.
Feng
,
J.
,
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2011
, “
Investigation of Periodically Unsteady Flow in a Radial Pump by CFD Simulations and LDV Measurements
,”
ASME J. Turbomach.
,
133
(
1
), p.
011004
.10.1115/1.4000486
11.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.10.1115/1.4004636
12.
Si
,
Q.
,
Yuan
,
S.
,
Yuan
,
J.
, and
Liang
,
Y.
,
2013
, “
Investigation on Flow-Induced Noise Due to Backflow in Low Specific Speed Centrifugal Pumps
,”
Adv. Mech. Eng.
,
2013
, p.
109048
.10.1155/2013/109048
13.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2015
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.10.1115/1.4027142
14.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump With Special Slope Volute
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061103
.10.1115/1.4029574
15.
Akhras
,
A.
,
El Hajem
,
M.
,
Champagne
,
J.-Y.
, and
Morel
,
R.
,
2004
, “
The Flow Rate Influence on the Interaction of a Radial Pump Impeller and the Diffuser
,”
Int. J. Rotating Mach.
,
10
(
4
), pp.
309
317
.10.1155/S1023621X04000326
16.
Zhu
,
B.
, and
Kamemoto
,
K.
,
2005
, “
Numerical Simulation of Unsteady Interaction of Centrifugal Impeller With Its Diffuser Using Lagrangian Discrete Vortex Method
,”
Acta Mech. Sinica
,
21
(
1
), pp.
40
46
.10.1007/s10409-004-0005-7
17.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.10.1115/1.2969273
18.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
73
83
.10.1115/1.1524586
19.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
,
2003
, “
Large-Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,”
Int. J. Rotating Mach.
,
9
(
5
), pp.
345
351
.10.1155/S1023621X03000320
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
21.
Yamanishi
,
N.
,
Fukao
,
S.
,
Qiao
,
X.
,
Kato
,
C.
, and
Tsujimoto
,
Y.
,
2007
, “
LES Simulation of Backflow Vortex Structure at the Inlet of an Inducer
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
587
594
.10.1115/1.2717613
22.
Lucius
,
A.
, and
Brenner
,
G.
,
2010
, “
Unsteady CFD Simulations of a Pump in Part Load Conditions Using Scale-Adaptive Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1113
1118
.10.1016/j.ijheatfluidflow.2010.06.005
23.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 10–13,
AIAA
Paper No. 2005-1095, pp.
271
283
.10.2514/6.2005-1095
24.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
,
2003
, “
An Overset Finite-Element Large-Eddy Simulation Method With Applications to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
32
43
.10.1115/1.1530637
25.
Posa
,
A.
,
Lippolis
,
A.
,
Verzicco
,
R.
, and
Balaras
,
E.
,
2011
, “
Large-Eddy Simulations in Mixed-Flow Pumps Using an Immersed-Boundary Method
,”
Comput. Fluids
,
47
(
1
), pp.
33
43
.10.1016/j.compfluid.2011.02.004
26.
Boccazzi
,
A.
,
Miorini
,
R.
,
Sala
,
R.
, and
Marinoni
,
F.
,
2009
, “
Unsteady Flow Field in a Radial Pump Vaned Diffuser
,”
8th European Conference on Turbomachinery
,
Graz, Austria
, Mar. 23–27, pp.
1103
1112
.
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
28.
Balaras
,
E.
,
2004
, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
,
33
(
3
), pp.
375
404
.10.1016/S0045-7930(03)00058-6
29.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
30.
Swarztrauber
,
P. N.
,
1974
, “
A Direct Method for the Discrete Solution of Separable Elliptic Equations
,”
SIAM J. Numer. Anal.
,
11
(
6
), pp.
1136
1150
.10.1137/0711086
31.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
,
1993
, “
Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
,
256
, pp.
163
197
.10.1017/S0022112093002757
32.
Aubertine
,
C. D.
, and
Eaton
,
J. K.
,
2005
, “
Turbulence Development in a Non-Equilibrium Turbulent Boundary Layer With Mild Adverse Pressure Gradient
,”
J. Fluid Mech.
,
532
, pp.
345
364
.10.1017/S0022112005004143
33.
Nagano
,
Y.
,
Tsuji
,
T.
, and
Houra
,
T.
,
1998
, “
Structure of Turbulent Boundary Layer Subjected to Adverse Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
563
572
.10.1016/S0142-727X(98)10013-9
34.
Patel
,
V. C.
,
Nakayama
,
A.
, and
Damian
,
R.
,
1974
, “
Measurements in the Thick Axisymmetric Turbulent Boundary Layer Near the Tail of a Body of Revolution
,”
J. Fluid Mech.
,
63
(
2
), pp.
345
367
.10.1017/S0022112074001170
35.
Spalart
,
P. R.
, and
Watmuff
,
J. H.
,
1993
, “
Experimental and Numerical Study of a Turbulent Boundary Layer With Pressure Gradients
,”
J. Fluid Mech.
,
249
, pp.
337
371
.10.1017/S002211209300120X
You do not currently have access to this content.