In this paper, we review and compare the level set, phase-field, and immersed boundary methods for incompressible two-phase flows. The models are based on modified Navier–Stokes and interface evolution equations. We present the basic concepts behind these approaches and discuss the advantages and disadvantages of each method. We also present numerical solutions of the three methods and perform characteristic numerical experiments for two-phase fluid flows.

References

1.
Caboussat
,
A.
,
2005
, “
Numerical Simulation of Two-Phase Free Surface Flows
,”
Arch. Comput. Method Eng.
,
12
, pp.
165
224
.10.1007/BF03044518
2.
Prosperetti
,
A.
, and
Tryggvason
,
G.
,
2007
,
Computational Methods for Multiphase Flow
,
Cambridge University Press
,
New York
.
3.
Clayton
,
T. C.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press, Boca Raton, FL
.
4.
Worner
,
M.
,
2012
, “
Numerical Modeling of Multiphase Flows in Microfluidics and Micro Process Engineering: A Review of Methods and Applications
,”
Microfluid. Nanofluid.
,
12
, pp.
841
886
.10.1007/s10404-012-0940-8
5.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.10.1016/0021-9991(92)90240-Y
6.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
.10.1016/0021-9991(88)90002-2
7.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes
,”
J. Comput. Phys.
,
77
, pp.
439
471
.10.1016/0021-9991(88)90177-5
8.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
, pp.
146
159
.10.1006/jcph.1994.1155
9.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
,
1996
, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
,
124
, pp.
449
464
.10.1006/jcph.1996.0072
10.
Sussman
,
M.
,
Fatemi
,
E.
,
Smerekc
,
P.
, and
Osher
,
S.
,
1998
, “
An Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
,
27
pp.
663
680
.10.1016/S0045-7930(97)00053-4
11.
Sethian
,
J. A.
,
1999
,
Level-Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science
,
Cambridge University Press
,
New York
.
12.
Sussman
,
M.
,
Almgren
,
A.
,
Bell
,
J.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M.
,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
148
, pp.
81
124
.10.1006/jcph.1998.6106
13.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
, pp.
301
337
.10.1006/jcph.2000.6537
14.
Kang
,
M.
,
Fedkiw
,
R. P.
, and
Liu
,
X. D.
,
2000
, “
A Boundary Condition Capturing Method for Multiphase Incompressible Flow
,”
J. Sci. Comput.
,
15
, pp.
323
360
.10.1023/A:1011178417620
15.
Smith
,
K. A.
,
Solis
,
F. J.
,
Tao
,
L.
,
Thornton
,
K.
, and
De La Cruz
,
M. O.
,
2000
, “
Domain Growth in Ternary Fluids: A Level Set Approach
,”
Phys. Rev. Lett.
,
84
, pp.
91v94
.
16.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
, pp.
463
502
.10.1006/jcph.2000.6636
17.
Enright
,
D.
,
Fedkiw
,
R.
,
Ferziger
,
J.
, and
Mitchell
,
I.
,
2002
, “
A Hybrid Particle Level Set Method for Improved Interface Capturing
,”
J. Comput. Phys.
,
183
, pp.
83
116
.10.1006/jcph.2002.7166
18.
Smith
,
K. A.
,
Solis
,
F. J.
, and
Chopp
,
D. L.
,
2002
, “
A Projection Method for Motion of Triple Junctions by Level Sets
,”
Interfaces Free Bound.
,
4
, pp.
263
276
.10.4171/IFB/61
19.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
New York
.
20.
Sethian
,
J. A.
, and
Smereka
,
P.
,
2003
, “
Level Set Methods for Fluid Interfaces
,”
Annu. Rev. Fluid Mech.
,
35
, pp.
341
372
.10.1146/annurev.fluid.35.101101.161105
21.
Xu
,
J.-J.
, and
Zhao
,
H.-K.
,
2003
, “
An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface
,”
J. Sci. Comput.
,
19
, pp.
573
594
.10.1023/A:1025336916176
22.
Sussman
,
M.
,
2003
, “
A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
,
187
, pp.
110
136
.10.1016/S0021-9991(03)00087-1
23.
Smith
,
K. A.
,
Ottino
,
J. M.
, and
de la Cruz
,
M. O.
,
2004
, “
Encapsulated Drop Breakup in Shear Flow
,”
Phys. Rev. Lett.
,
93
, pp.
204501-1
204501-4
.
24.
Olsson
,
E.
, and
Kreiss
,
G.
,
2005
, “
A Conservative Level Set Method for Two Phase Flow
,’’
J. Comput. Phys.
,
210
, pp.
225
246
.10.1016/j.jcp.2005.04.007
25.
Majumder
,
S.
, and
Chakraborty
,
S.
,
2005
, “
New Physically Based Approach of Mass Conservation Correction in Level Set Formulation for Incompressible Two-Phase Flows
,”
ASME J. Fluids Eng.
,
127
, pp.
554
563
.10.1115/1.1899172
26.
Tanguy
,
S.
, and
Berlemont
,
A.
,
2005
, “
Application of a Level Set Method for Simulation of Droplet Collisions
,”
Int. J. Multiphase Flow
,
31
, pp.
1015
1035
.10.1016/j.ijmultiphaseflow.2005.05.010
27.
Enright
,
D.
,
Losasso
,
F.
, and
Fedkiw
,
R.
,
2005
, “
A Fast and Accurate Semi-Lagrangian Particle Level Set Method
,”
Comput. Struct.
,
83
, pp.
479
490
.10.1016/j.compstruc.2004.04.024
28.
Shepel
,
S. V.
, and
Smith
,
B. L.
,
2006
, “
New Finite-Element/Finite-Volume Level Set Formulation for Modelling Two-Phase Incompressible Flows
,”
J. Comput. Phys.
,
218
, pp.
479
494
.10.1016/j.jcp.2006.02.008
29.
Grooss
,
J.
, and
Hesthaven
,
J. S.
,
2006
, “
A Level Set Discontinuous Galerkin Method for Free Surface Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
195
, pp.
3406
3429
.10.1016/j.cma.2005.06.020
30.
Hong
,
J. M.
,
Shinar
,
T.
,
Kang
,
M.
, and
Fedkiw
,
R.
,
2007
, “
On Boundary Condition Capturing for Multiphase Interfaces
,”
J. Sci. Comput.
,
31
, pp.
99
125
.10.1007/s10915-006-9120-x
31.
Olsson
,
E.
,
Kreiss
,
G.
, and
Zahedi
,
S.
,
2007
, “
A Conservative Level Set Method for Two Phase Flow II
,”
J. Comput. Phys.
,
225
, pp.
785
807
.10.1016/j.jcp.2006.12.027
32.
Sussman
,
M.
,
Smith
,
K. M.
,
Hussaini
,
M. Y.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
,
2007
, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
221
, pp.
469
505
.10.1016/j.jcp.2006.06.020
33.
Croce
,
R.
,
Griebel
,
M.
, and
Schweitzer
,
M. A.
,
2010
, “
Numerical Simulation of Bubble and Droplet Deformation by a Level Set Approach With Surface Tension in Three Dimensions
,”
Int. J. Numer. Meth. Fluids
,
62
, pp.
963
993
.
34.
Ausas
,
R. F.
,
Dari
,
E. A.
, and
Buscaglia
,
G. C.
,
2011
, “
A Geometric Mass-Preserving Redistancing Scheme for the Level Set Function
,”
Int. J. Numer. Meth. Fluids
,
65
, pp.
989
1010
.10.1002/fld.2227
35.
Pathak
,
M.
,
2012
, “
Numerical Analysis of Droplet Dynamics Under Different Temperature and Cross-Flow Velocity Conditions
,”
ASME J. Fluids Eng.
,
134
, pp.
044501-1
044501-6
.10.1115/1.4006427
36.
Starovoitov
,
V. N.
,
1994
, “
Model of the Motion of a Two-Component Liquid With Allowance of Capillary Forces
,”
J. Appl. Mech. Tech. Phys.
,
35
, pp.
891
897
.10.1007/BF02369582
37.
Chella
,
R.
, and
Viñals
,
J.
,
1996
, “
Mixing of a Two-Phase Fluid by Cavity Flow
,”
Phys. Rev. E
,
53
, pp.
3832
3840
.10.1103/PhysRevE.53.3832
38.
Gurtin
,
M. E.
,
Polignone
,
D.
, and
Vinals
,
J.
,
1996
, “
Two-Phase Binary Fluids and Immiscible Fluids Described by an Order Parameter
,”
Math. Models Methods Appl. Sci.
,
6
, pp.
815
831
.10.1142/S0218202596000341
39.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
,
1998
, “
Diffuse-Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
139
165
.10.1146/annurev.fluid.30.1.139
40.
Lowengrub
,
J.
, and
Truskinovsky
,
L.
,
1998
, “
Quasi-Incompressible Cahn–Hilliard Fluids and Topological Transitions
,”
Proc. Roy. Soc. London Ser. A
,
454
, pp.
2617
2654
.10.1098/rspa.1998.0273
41.
Jacqmin
,
D.
,
1999
, “
Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
,
155
, pp.
96
127
.10.1006/jcph.1999.6332
42.
Jacqmin
,
D.
,
2000
, “
Contact-Line Dynamics of a Diffuse Fluid Interface
,”
J. Fluid Mech.
,
402
, pp.
57
88
.10.1017/S0022112099006874
43.
Verschueren
,
M.
,
Van de Vosse
,
F. N.
, and
Meijer
,
H. E. H.
,
2001
, “
Diffuse-Interface Modelling of Thermocapillary Flow Instabilities in a Hele-Shaw Cell
,”
J. Fluid Mech.
,
434
, pp.
153
166
.10.1017/S0022112001003561
44.
Lee
,
H.-G.
,
Lowengrub
,
J. S.
, and
Goodman
,
J.
,
2002
, “
Modeling Pinchoff and Reconnection in a Hele-Shaw Cell. I. The Models and Their Calibration
,”
Phys. Fluids
,
14
, pp.
492
513
.10.1063/1.1425843
45.
Lee
,
H.-G.
,
Lowengrub
,
J. S.
, and
Goodman
,
J.
,
2002
, “
Modeling Pinchoff and Reconnection in a Hele-Shaw Cell. II. Analysis and Simulation in the Nonlinear Regime
,”
Phys. Fluids
,
14
, pp.
514
545
.10.1063/1.1425844
46.
Boyer
,
F.
,
2002
, “
A Theoretical and Numerical Model for the Study of Incompressible Mixture Flows
,”
Comput. Fluids
,
31
, pp.
41
68
.10.1016/S0045-7930(00)00031-1
47.
Badalassi
,
V. E.
,
Ceniceros
,
H. D.
, and
Banerjee
,
S.
,
2003
, “
Computation of Multiphase Systems With Phase Field Models
,”
J. Comput. Phys.
,
190
, pp.
371
397
.10.1016/S0021-9991(03)00280-8
48.
Liu
,
C.
, and
Shen
,
J.
,
2003
, “
A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a Fourier-Spectral Method
,”
Phys. D
,
179
, pp.
211
228
.10.1016/S0167-2789(03)00030-7
49.
Kim
,
J.
,
Kang
,
K.
, and
Lowengrub
,
J.
,
2004
, “
Conservative Multigrid Methods for Cahn-Hilliard Fluids
,”
J. Comput. Phys.
,
193
, pp.
511
543
.10.1016/j.jcp.2003.07.035
50.
Sun
,
Y.
, and
Beckermann
,
C.
,
2004
, “
Diffuse Interface Modeling of Two-Phase Flows Based on Averaging: Mass and Momentum Equations
,”
Phys. D
,
198
, pp.
281
308
.10.1016/j.physd.2004.09.003
51.
Khatavkar
,
V. V.
,
Anderson
,
P. D.
,
Duineveld
,
P. C.
, and
Meijer
,
H. H. E.
,
2005
, “
Diffuse Interface Modeling of Droplet Impact on a Pre-Patterned Solid Surface
,”
Macromol. Rapid Commun.
,
26
, pp.
298
303
.10.1002/marc.200400478
52.
Kim
,
J.
,
2005
, “
A Diffuse-Interface Model for Axisymmetric Immiscible Two-Phase Flow
,”
Appl. Math. Comput.
,
160
, pp.
589
606
.10.1016/j.amc.2003.11.020
53.
Yue
,
P.
,
Feng
,
J. J.
,
Liu
,
C.
, and
Shen
,
J.
,
2005
, “
Diffuse-Interface Simulations of Drop Coalescence and Retraction in Viscoelastic Fluids
,”
J. Non-Newton. Fluid Mech.
,
129
, pp.
163
176
.10.1016/j.jnnfm.2005.07.002
54.
Kim
,
J.
,
2005
, “
A Continuous Surface Tension Force Formulation for Diffuse-Interface Models
,”
J. Comput. Phys.
,
204
, pp.
784
804
.10.1016/j.jcp.2004.10.032
55.
Badalassi
,
V. E.
, and
Banerjee
,
S.
,
2005
, “
Nano-Structure Computation With Coupled Momentum Phase Ordering Kinetics Models
,”
Nucl. Eng. Des.
,
235
, pp.
1107
1115
.10.1016/j.nucengdes.2005.02.008
56.
Yang
,
X.
,
Feng
,
J. J.
,
Liu
,
C.
, and
Shen
,
J.
,
2006
, “
Numerical Simulations of Jet Pinching-Off and Drop Formation Using an Energetic Variational Phase-Field Method
,”
J. Comput. Phys.
,
218
, pp.
417
428
.10.1016/j.jcp.2006.02.021
57.
Yue
,
P.
,
Zhou
,
C.
, and
Feng
,
J. J.
,
2007
, “
Spontaneous Shrinkage of Drops and Mass Conservation in Phase-Field Simulations
,”
J. Comput. Phys.
,
223
, pp.
1
9
.10.1016/j.jcp.2006.11.020
58.
Ding
,
H.
, and
Spelt
,
P. D. M.
,
2007
, “
Wetting Condition in Diffuse Interface Simulations of Contact Line Motion
,”
Phys. Rev. E
,
75
, p.
046708
.
59.
Khatavkar
,
V. V.
,
Anderson
,
P. D.
,
Duineveld
,
P. C.
, and
Meijer
,
H. H. E.
,
2007
, “
Diffuse-Interface Modelling of Droplet Impact
,”
J. Fluid Mech.
,
581
, pp.
97
127
.10.1017/S002211200700554X
60.
He
,
Q.
, and
Kasagi
,
N.
,
2008
, “
Phase-Field Simulation of Small Capillary-Number Two-Phase Flow in a Microtube
,”
Fluid Dyn. Res.
,
40
, pp.
497
509
.10.1016/j.fluiddyn.2008.01.002
61.
Kim
,
J.
,
2009
, “
A Generalized Continuous Surface Tension Force Formulation for Phase-Field Models for Multi-Component Immiscible Fluid Flows
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3105
3112
.10.1016/j.cma.2009.05.008
62.
Shen
,
J.
, and
Yang
,
X.
,
2009
, “
An Efficient Moving Mesh Spectral Method for the Phase-Field Model of Two-Phase Flows
,”
J. Comput. Phys.
,
228
, pp.
2978
2992
.10.1016/j.jcp.2009.01.009
63.
Acar
,
R.
,
2009
, “
Simulation of Interface Dynamics: A Diffuse-Interface Model
,”
Visual Comput.
,
25
, pp.
101
115
.10.1007/s00371-008-0208-1
64.
Ceniceros
,
H. D.
,
Nós
,
R. L.
, and
Roma
,
A. M.
,
2010
, “
Three-Dimensional, Fully Adaptive Simulations of Phase-Field Fluid Models
,”
J. Comput. Phys.
,
229
, pp.
6135
6155
.10.1016/j.jcp.2010.04.045
65.
Chiu
,
P. H.
, and
Lin
,
Y. T.
,
2011
, “
A Conservative Phase Field Method for Solving Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
230
, pp.
185
204
.10.1016/j.jcp.2010.09.021
66.
Kim
,
J.
,
2012
, “
Phase-Field Models for Multi-Component Fluid Flows
,”
Commun. Comput. Phys.
,
12
, pp.
613
661
.
67.
Lee
,
H. G.
,
Choi
,
J. W.
, and
Kim
,
J.
,
2012
, “
A Practically Unconditionally Gradient Stable Scheme for the N-Component Cahn–Hilliard System
,”
Physica A
,
391
, pp.
1009
1019
.10.1016/j.physa.2011.11.032
68.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
, pp.
220
252
.10.1016/0021-9991(77)90100-0
69.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1980
, “
Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
37
, pp.
113
132
.10.1016/0021-9991(80)90007-8
70.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
, pp.
25
37
.10.1016/0021-9991(92)90307-K
71.
Peskin
,
C. S.
, and
Printz
,
B. F.
,
1993
, “
Improved Volume Conservation in the Computation of Flows With Immersed Elastic Boundaries
,”
J. Comput. Phys.
,
105
, pp.
33
46
.10.1006/jcph.1993.1051
72.
Sheth
,
K. S.
, and
Pozrikidis
,
C.
,
1995
, “
Effects of Inertia on the Deformation of Liquid Drops in Simple Shear Flow
,”
Comput. Fluids
,
24
, pp.
101
119
.10.1016/0045-7930(94)00025-T
73.
Stockie
,
J. M.
,
1997
, “
Analysis and Computation of Immersed Boundaries, With Application to Pulp Fibres
,” Ph.D. thesis, University of British Columbia, British Columbia, Canada.
74.
Udaykumar
,
H. S.
,
Kan
,
H. C.
,
Shyy
,
W.
, and
Tran-Son-Tay
,
R.
,
1997
, “
Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids
,”
J. Comput. Phys.
,
137
, pp.
366
405
.10.1006/jcph.1997.5805
75.
Kan
,
H. C.
,
Udaykumar
,
H. S.
,
Shyy
,
W.
, and
Tran-Son-Tay
,
R.
,
1998
, “
Hydrodynamics of a Compound Drop With Application to Leukocyte Modeling
,”
Phys. Fluids.
,
10
, pp.
760
774
.10.1063/1.869601
76.
Roma
,
A. M.
,
Peskin
,
C. S.
, and
Berger
,
M. J.
,
1999
, “
An Adaptive Version of the Immersed Boundary Method
,”
J. Comput. Phys.
,
153
, pp.
509
534
.10.1006/jcph.1999.6293
77.
Kan
,
H. C.
,
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Vigneron
,
P.
, and
Tran-Son-Tay
,
R.
,
1999
, “
Effects of Nucleus on Leukocyte Recovery
,”
Ann. Biomed. Eng.
,
27
, pp.
648
655
.10.1114/1.214
78.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
79.
Francois
,
M.
, and
Shyy
,
W.
,
2003
, “
Computations of Drop Dynamics With the Immersed Boundary Method, Part 1: Numerical Algorithm and Buoyancy-Induced Effect
,”
Numer. Heat Tran. B
,
44
, pp.
101
118
.10.1080/713836347
80.
Francois
,
M.
,
Uzgoren
,
E.
,
Jackson
,
J.
, and
Shyy
,
W.
,
2004
, “
Multigrid Computations With the Immersed Boundary Technique for Multiphase Flows
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
14
, pp.
98
115
.10.1108/09615530410511658
81.
Mittal
,
R.
, and
Iaccrino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
82.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
, pp.
448
476
.10.1016/j.jcp.2005.03.017
83.
Griffith
,
B. E.
, and
Peskin
,
C. S.
,
2005
, “
On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rates for Sufficiently Smooth Problems
,”
J. Comput. Phys.
,
208
, pp.
75
105
.10.1016/j.jcp.2005.02.011
84.
Griffith
,
B. E.
,
Hornung
,
R. D.
,
McQueen
,
D. M.
, and
Peskin
,
C. S.
,
2005
, “
An Adaptive, Formally Second Order Accurate Version of the Immersed Boundary Method
,”
J. Comput. Phys.
,
223
, pp.
10
49
.10.1016/j.jcp.2006.08.019
85.
Newren
,
E.
,
Fogelson
,
A. L.
,
Guy
,
R. D.
, and
Kirby
,
R. M.
,
2007
, “
Unconditionally Stable Discretizations of the Immersed Boundary Equations
,”
J. Comput. Phys.
,
222
, pp.
702
719
.10.1016/j.jcp.2006.08.004
86.
Shin
,
S. J.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
,
2008
, “
Assessment of Regularized Delta Functions and Feedback Forcing Schemes for an Immersed Boundary Method
,”
Int. J. Numer. Meth. Fluids
,
58
, pp.
263
286
.10.1002/fld.1706
87.
Kim
,
Y.
, and
Peskin
,
C. S.
,
2008
, “
Numerical Study of Incompressible Fluid Dynamics With Nonuniform Density by the Immersed Boundary Method
,”
Phys. Fluids
,
20
, p.
062101
.
88.
Yang
,
X.
,
Zhang
,
X.
,
Li
,
Z.
, and
He
,
G.-W.
,
2009
, “
A Smoothing Technique for Discrete Delta Functions With Application to Immersed Boundary Method in Moving Boundary Simulations
,”
J. Comput. Phys.
,
228
, pp.
7821
7836
.10.1016/j.jcp.2009.07.023
89.
Chen
,
K. Y.
,
Feng
,
K. A.
,
Kim
,
Y.
, and
Lai
,
M. C.
,
2011
, “
A Note on Pressure Accuracy in Immersed Boundary Method for Stokes Flow
,”
J. Comput. Phys.
,
230
, pp.
4377
4383
.10.1016/j.jcp.2011.03.019
90.
Li
,
Y.
,
Jung
,
E.
,
Lee
,
W.
,
Lee
,
H. G.
, and
Kim
,
J.
,
2012
, “
Volume Preserving Immersed Boundary Methods for Two-Phase Fluid Flows
,”
Int. J. Numer. Methods Fluids
,
69
, pp.
842
858
.10.1002/fld.2616
91.
Li
,
Y.
,
Yun
,
A.
,
Lee
,
D.
,
Shin
,
J.
,
Jeong
,
D.
, and
Kim
,
J.
,
2013
, “
Three-Dimensional Volume-Conserving Immersed Boundary Model for Two-Phase Fluid Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
257
, pp.
36
46
.10.1016/j.cma.2013.01.009
92.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
,
258
267
.10.1063/1.1744102
93.
LeVeque
,
R. J.
, and
Li
,
Z.
,
1994
, “
The Immersed Interface Method for Elliptic Equations With Discontinuous Coefficients and Singular Sources
,”
SIAM J. Numer. Anal.
,
31
, pp.
1019
1044
.10.1137/0731054
94.
LeVeque
,
R. J.
, and
Li
,
Z.
,
1997
, “
Immersed Interface Methods for Stokes Flow With Elastic Boundaries or Surface Tension
,”
SIAM J. Sci. Comput.
,
18
, pp.
709
735
.10.1137/S1064827595282532
95.
Berthelsen
,
P. A.
,
2004
, “
A Decomposed Immersed Interface Method for Variable Coefficient Elliptic Equations With Non-Smooth and Discontinuous Solutions
,”
J. Comput. Phys.
,
197
, pp.
364
386
.10.1016/j.jcp.2003.12.003
96.
Li
,
Z.
,
Ito
,
K.
, and
Lai
,
M. C.
,
2007
, “
An Augmented Approach for Stokes Equations With a Discontinuous Viscosity and Singular Forces
,”
Comput. Fluids
,
36
, pp.
622
635
.10.1016/j.compfluid.2006.03.003
97.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
156
, pp.
209
240
.10.1006/jcph.1999.6356
98.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
, pp.
35
60
.10.1006/jcph.2000.6484
99.
Deng
,
J.
,
Shao
,
X. M.
, and
Ren
,
A. L.
,
2006
, “
A New Modification of the Immersed-Boundary Method for Simulating Flows With Complex Moving Boundaries
,”
Int. J. Numer. Meth. Fluids
,
52
, pp.
1195
1213
.10.1002/fld.1237
100.
Sheu
,
T. W. H.
,
Ting
,
H. F.
, and
Lin
,
R. K.
,
2008
, “
An Immersed Boundary Method for the Incompressible Navier–Stokes Equations in Complex Geometry
,”
Int. J. Numer. Meth. Fluids
,
56
, pp.
877
898
.10.1002/fld.1558
101.
Shyam Kumar
,
M. B.
, and
Vengadesan
,
S.
,
2012
, “
Influence of Rounded Corners on Flow Interference Due to Square Cylinders Using Immersed Boundary Method
,”
ASME J. Fluids Eng.
,
134
, pp.
091203-1
091203-23
.10.1115/1.4007015
102.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,
Phys. Fluids.
,
8
, pp.
2182
2189
.10.1063/1.1761178
103.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
, pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
104.
Trottenberg
,
U.
,
Oosterlee
,
C. W.
, and
Schüller
,
A.
,
2001
,
Multigrid
,
Academic Press
, New York.
105.
Eyre
,
D. J.
,
1998
, “
Unconditionally Gradient Stable Time Marching the Cahn–Hilliard Equation
,”
Mater. Res. Soc. Symp. Proc.
,
529
, pp.
39
46
.10.1557/PROC-529-39
106.
Kim
,
J. S.
, and
Bae
,
H. O.
,
2008
, “
An Unconditionally Gradient Stable Adaptive Mesh Refinement for the Cahn–Hilliard Equation
,”
J. Korean Phys. Soc.
,
53
, pp.
672
679
.10.3938/jkps.53.672
You do not currently have access to this content.