Transport through phloem is of significant interest in engineering applications, including self-powered microfluidic pumps. In this paper we present a phloem model, combining protein level mechanics with cellular level fluid transport. Fluid flow and sucrose transport through a petiole sieve tube are simulated using the Nernst–Planck, Navier–Stokes, and continuity equations. The governing equations are solved, using the finite volume method with collocated storage, for dynamically calculated boundary conditions. A sieve tube cell structure consisting of sieve plates is included in a two dimensional model by computational cell blocking. Sucrose transport is incorporated as a boundary condition through a six-state model, bringing in active loading mechanisms, taking into consideration their physical plant properties. The effects of reaction rates and leaf sucrose concentration are investigated to understand the transport mechanism in petiole sieve tubes. The numerical results show that increasing forward reactions of the proton sucrose transporter significantly promotes the pumping ability. A lower leaf sieve sucrose concentration results in a lower wall inflow velocity, but yields a higher inflow of water due to the active loading mechanism. The overall effect is a higher outflow velocity for the lower leaf sieve sucrose concentration because the increase in inflow velocity outweighs the wall velocity. This new phloem model provides new insights on mechanisms which are potentially useful for fluidic pumping in self-powered microfluidic pumps.

References

1.
Yairi
,
M.
and
Richter
,
C.
,
2007
, “
Massively Parallel Microfluidic Pump
,”
Sens. Actuators, A
,
137
(
2
), pp.
350
356
.10.1016/j.sna.2007.03.013
2.
Schroeder
,
M. A.
,
Salloum
,
K. S.
,
Perbost
,
M.
,
Lebl
,
M.
, and
Posner
,
J. D.
,
2011
, “
Radial Flow Electroosmotic Pump
,”
Sens. Actuators, A
,
169
(
1
), pp.
250
255
.10.1016/j.sna.2011.05.013
3.
Shim
,
J.
and
Dutta
,
P.
,
2012
, “
Joule Heating Effect in Constant Voltage Mode Isotachophoresis in a Microchannel
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
13
(
5
), pp.
333
344
. 10.1515/ijnsns-2012-0403
4.
Horiuchi
,
K.
,
Dutta
,
P.
, and
Hossain
,
A.
,
2006
, “
Joule-Heating Effects in Mixed Electro-Osmotic and Pressure-Driven Microflows Under Constant Wall Heat Flux
,”
J. Eng. Math.
,
54
(
2
), pp.
159
180
.10.1007/s10665-005-9019-9
5.
Pal
,
S.
,
Datta
,
A.
,
Sen
,
S.
,
Mukhopdhyay
,
A.
,
Bandopadhyay
,
K.
, and
Ganguly
,
R.
,
2011
, “
Characterization of a Ferrofluid-Based Thermomagnetic Pump for Microfluidic Applications
,”
J. Magn. Magn. Mater.
,
323
(
21
), pp.
2701
2709
.10.1016/j.jmmm.2011.06.016
6.
Li
,
G.
,
Luo
,
Y.
,
Chen
,
Q.
,
Liao
,
L.
, and
Zhao
,
J.
,
2012
, “
A”Place n Play“Modular Pump for Portable Microfluidic Applications
,”
Biomicrofluidics
,
6
(
1
), p.
014118
.10.1063/1.3692770
7.
Squires
,
T. M.
,
2010
, “
A Furtive Stare at an Intra-Cellular Flow
,”
J. Fluid Mech
,
642
(
01
), pp.
1
4
.10.1017/S0022112009992990
8.
Sundaresan
,
V. B.
and
Leo
,
D. J.
,
2008
, “
Modeling and Characterization of a Chemomechanical Actuator Using Protein Transporter
,”
Sens. Actuators B
,
131
(
2
), pp.
384
393
.10.1016/j.snb.2007.11.057
9.
Daudet
,
F. A.
,
Lacointe
,
A.
,
Gaudillère
,
J. P.
, and
Cruiziat
,
P.
,
2002
, “
Generalized Münch Coupling Between Sugar and Water Fluxes for Modelling Carbon Allocation as Affected by Water Status
,”
J. Theor. Biol.
,
214
(
3
), pp.
481
498
.10.1006/jtbi.2001.2473
10.
De Schepper
,
V.
and
Steppe
,
K.
,
2010
, “
Development and Verification of a Water and Sugar Transport Model Using Measured Stem Diameter Variations
,”
J. Exp. Bot.
,
61
(
8
), pp.
2083
2099
.10.1093/jxb/erq018
11.
Thompson
,
M. V.
and
Holbrook
,
N. M.
,
2003
, “
Application of a Single-Solute Non-Steady-State Phloem Model to the Study of Long-Distance Assimilate Transport
,”
J. Theor. Biol.
,
220
(
4
), pp.
419
455
.10.1006/jtbi.2003.3115
12.
Christy
,
A. L.
and
Ferrier.
J. M.
,
1973
, “
A Mathematical Treatment of Munch's Pressure-Flow Hypothesis of Phloem Translocation
,”
Plant Physiol.
,
52
(
6
), pp.
531
538
.10.1104/pp.52.6.531
13.
Schulte
,
P. J.
,
1999
, “
Water Flow Through a 20-Pore Perforation Plate in Vessels of Liquidambar Styraciflua
,”
J. Exp. Bot.
,
50
(
336
), pp.
1179
1187
.10.1093/jxb/50.336.1179
14.
Jensen
,
K. H.
,
Mullendore
,
D. L.
,
Holbrook
,
N. M.
,
Bohr
,
T.
,
Knoblauch
,
M.
, and
Bruus
,
H.
,
2012
, “
Modeling the Hydrodynamics of Phloem Sieve Plates
,”
Front. Plant Sci.
,
3
(
151
), pp.
1
11
.10.3389/fpls.2012.00151
15.
Turgeon
,
R.
,
2010
, “
The Role of Phloem Loading Reconsidered
,”
Plant Physiol.
,
152
(
4
), pp.
1817
1823
.10.1104/pp.110.153023
16.
Borstlap
,
A. C.
and
Schuurmans
,
J.A.M.J.
,
2004
, “
Sucrose Transport Into Plasma Membrane Vesicles From Tobacco Leaves by H+ Symport or Counter Exchange Does not Display a Linear Component
,”
J. Membr. Biol.
,
198
(
1
), pp.
31
42
.10.1007/s00232-004-0657-z
17.
Boorer
,
K. J.
,
Loo
,
D. D.
,
Frommer
,
W. B.
, and
Wright
,
E. M.
,
1996
, “
Transport Mechanism of the Cloned Potato H+/Sucrose Cotransporter StSUT1
,”
J. Biol. Chem.
,
271
(
41
), pp.
25139
25144
.10.1074/jbc.271.41.25139
18.
Gomes
,
D.
,
Agasse
,
A.
,
Thiébaud
,
P.
,
Delrot
,
S.
,
Gerós
,
H.
, and
Chaumont
,
F.
,
2009
, “
Aquaporins are Multifunctional Water and Solute Transporters Highly Divergent in Living Organisms
,”
Biochim. Biophys. Acta
,
1788
(
6
), pp.
1213
1228
.10.1016/j.bbamem.2009.03.009
19.
Wu
,
F.
and
Tanksley
,
S. D.
,
2010
, “
Chromosomal Evolution in the Plant Family Solanaceae
,”
BMC Genomics
,
11
, p.
182
.10.1186/1471-2164-11-182
20.
Sprague
,
I. B.
and
Dutta
,
P.
,
2011
, “
Modeling of Diffuse Charge Effects in a Microfluidic Based Laminar Flow Fuel Cell
,”
Numer. Heat Transfer, Part A
,
59
(
1
), pp.
1
27
.10.1080/10407782.2010.523299
21.
Thompson
,
G. A.
and
Van Bel
,
A. J. E.
,
2013
,
Phloem Molecular Cell Biology, Systemic Communication, Biotic Interactions
,
Wiley-Blackwell
,
Ames, IA
.
22.
Kargol
,
M.
and
Kargol
,
A.
,
2003
, “
Mechanistic Equations for Membrane Substance Transport and Their Identity With Kedem-Katchalsky Equations
,”
Biophys. Chem.
,
103
(
2
), pp.
117
127
.10.1016/S0301-4622(02)00250-8
23.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
John Wiley and Sons
,
New York
.
24.
Fu
,
Q.
,
Cheng
,
L.
,
Guo
,
Y.
, and
Turgeon
,
R.
,
2011
, “
Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants
,”
Plant Physiol.
,
157
(
3
), pp.
1518
1527
.10.1104/pp.111.184820
25.
Zhou
,
J.
,
Theodoulou
,
F.
,
Sauer
,
N.
,
Sanders
,
D.
, and
Miller
,
A. J.
,
1997
, “
A Kinetic Model With Ordered Cytoplasmic Dissociation for SUC1, an Arabidopsis H+/Sucrose Cotransporter Expressed in Xenopus Oocytes
,”
J. Membr. Biol.
,
159
(
2
), pp.
113
125
.10.1007/s002329900275
26.
Shim
,
J.
,
Dutta
,
P.
, and
Ivory
,
C. F.
,
2007
, “
Finite-Volume Methods for Isotachophoretic Separation in Microchannels
,”
Numer. Heat Transfer, Part A
,
52
(
5
), pp.
441
461
.10.1080/10407780701298585
27.
Shim
,
J.
,
Dutta
,
P.
, and
Ivory
,
C. F.
,
2007
, “
Modeling and Simulation of IEF in 2-D Microgeometries
,”
Electrophoresis
,
28
(
4
), pp.
572
586
.10.1002/elps.200600402
28.
Mullendore
,
D. L.
,
Windt
,
C. W.
,
Van As
,
H.
, and
Knoblauch
,
M.
,
2010
, “
Sieve Tube Geometry in Relation to Phloem Flow
,”
Plant Cell
,
22
(
3
), pp.
579
593
.10.1105/tpc.109.070094
29.
Kempers
,
R.
,
Ammerlaan
,
A.
, and
Van Bel
,
A. J. E.
,
1998
, “
Symplasmic Constriction and Ultrastructural Features of the Sieve Element/Companion Cell Complex in the Transport Phloem of Apoplasmically and Symplasmically Phloem-Loading Species
,”
Plant Physiol.
,
116
(
1
), pp.
271
278
.10.1104/pp.116.1.271
30.
Overall
,
R. L.
,
Wolfe
,
J.
, and
Gunning
,
B. E. S.
,
1982
, “
Intercellular Communication in Azolla Roots: I. Ultrastructure of Plasmodesmata
,”
Protoplasma
,
111
(
2
), pp.
134
150
.10.1007/BF01282071
31.
Chenlo
,
F.
,
Moreira
,
R.
,
Pereira
,
G.
, and
Ampudia
,
A.
,
2002
, “
Viscosities of Aqueous Solutions of Sucrose and Sodium Chloride of Interest in Osmotic Dehydration Processes
,”
J. Food Eng.
,
54
(
4
), pp.
347
352
.10.1016/S0260-8774(01)00221-7
32.
Ekdawi-Sever
,
N.
,
de Pablo
,
J. J.
,
Feick
,
E.
, and
von Meerwall
,
E.
,
2003
, “
Diffusion of Sucrose and Alpha, Alpha-Trehalose in Aqueous Solutions
,”
J. Phys. Chem. A
,
107
, pp.
936
943
.10.1021/jp020187b
33.
Chatterjee
,
A.
,
1964
, “
Measurement of the Diffusion Coefficients of Sucrose in Very Dilute Aqueous Solutions Using Jamin Interference Optics at 25 deg
,”
J. Am. Chem. Soc.
,
86
(
5
), pp.
793
795
.10.1021/ja01059a009
34.
Michel
,
B. E.
,
1972
, “
Solute Potentials of Sucrose Solutions
,”
Plant Physiol.
,
50
(
1
), pp.
196
198
.10.1104/pp.50.1.196
35.
Begg
,
J. E.
and
Turner
,
N. C.
,
1970
, “
Water Potential Gradients in Field Tobacco
,”
Plant Physiol.
,
46
(
2
), pp.
343
346
.10.1104/pp.46.2.343
36.
Martre
,
P.
,
Morillon
,
R.
,
Barrieu
,
F.
,
North
,
G. B.
,
Nobel
,
P. S.
, and
Chrispeels
,
M. J.
,
2002
, “
Plasma Membrane Aquaporins Play a Significant Role During Recovery From Water Deficit
,”
Plant Physiol.
,
130
(
4
), pp.
2101
2110
.10.1104/pp.009019
37.
Oja
,
V.
,
Savchenko
,
G.
,
Jakob
,
B.
, and
Heber
,
U.
,
1999
, “
pH and Buffer Capacities of Apoplastic and Cytoplasmic Cell Compartments in Leaves
,”
Planta
,
209
(
2
), pp.
239
249
.10.1007/s004250050628
38.
Sweetlove
,
L. J.
,
Kossmann
,
J.
,
Riesmeier
,
J. W.
,
Trethewey
,
R. N.
, and
Hill
,
S. A.
,
1998
, “
The Control of Source to Sink Carbon Flux During Tuber Development in Potato
,”
Plant J.
,
15
(
5
), pp.
697
706
.10.1046/j.1365-313x.1998.00247.x
39.
Hafke
,
J. B.
,
van Amerongen
,
J. K.
,
Kelling
,
F.
,
Furch
,
A. C.
,
Gaupels
,
F.
, and
van Bel
,
A. J. E.
,
2005
, “
Thermodynamic Battle for Photosynthate Acquisition Between Sieve Tubes and Adjoining Parenchyma in Transport Phloem
,”
Plant Physiol.
,
138
(
3
), pp.
1527
1537
.10.1104/pp.104.058511
You do not currently have access to this content.