Resuspension is of common occurrence in a wide range of industrial and environmental processes. Excessive resuspension in these processes could have a severe impact on human safety and health. Therefore, it is necessary to develop a practical, yet reasonably accurate model to describe the resuspension phenomenon. It has been identified that rolling is the dominant mechanism for particle resuspension in the presence of an air stream, be it laminar or turbulent. Existing models predict the resuspension rate by regarding particles as being resuspended once they are set in motion; only a few of these models attempt to describe the full scenario, including rolling motion and the effect of turbulence. The objective of this paper is to propose a stochastic model to simulate the resuspension rate in the presence of a near-wall turbulent stream, and where the rolling mechanism is assumed to dominate the resuspension process. The fluctuating part of the angular velocity of a rolling particle is modeled by the Langevin equation (i.e., an Ornstein–Uhlenbeck process); thus, the overall angular velocity is modeled as a diffusion process. A free parameter of the proposed resuspension model is determined using data obtained from a Monte Carlo (MC) simulation of the problem. Once determined, the parameter is found to be universal for different materials and different sizes of particles tested. The modeling results obtained using this parameter are found to be in good agreement with experimental data, and the model performs better compared to other models.

References

1.
Sehmel
,
G. A.
,
1980
, “
Particle Resuspension: A Review
,”
Environ. Int.
,
4
(
2
), pp.
107
127
.10.1016/0160-4120(80)90005-7
2.
Nicholson
,
K. W.
,
1988
, “
A Review of Particle Resuspension
,”
Atmos. Environ.
,
22
, pp.
2639
2651
.10.1016/0004-6981(88)90433-7
3.
Ziskind
,
G.
,
2006
, “
Particle Resuspension From Surfaces: Revisited and Re-Evaluated
,”
Rev. Chem. Eng.
,
22
(
1–2
), pp.
1
123
.10.1515/REVCE.2006.22.1-2.1
4.
Qian
,
J.
, and
Ferro
,
A. R.
,
2008
, “
Resuspension of Dust Particles in a Chamber and Associated Environmental Factors
,”
Aerosol Sci. Technol.
,
42
, pp.
566
578
.10.1080/02786820802220274
5.
Zhang
,
X.
,
Ahmadi
,
G.
,
Qian
,
J.
, and
Ferro
,
A. R.
,
2008
, “
Particle Detachment, Resuspension and Transport Due to Human Walking in Indoor Environments
,”
J. Adhes. Sci. Technol.
,
22
, pp.
591
621
.10.1163/156856108X305624
6.
Kubota
,
Y.
,
Hall
,
J. W.
, and
Higuchi
,
H.
,
2009
, “
An Experimental Investigation of the Flow Field and Dust Resuspension Due to Idealized Human Walking
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081104
.10.1115/1.3176962
7.
Yang
,
Y.
,
Sze-To
,
G. N.
, and
Chao
,
C. Y. H.
,
2012
, “
Estimation of the Aerodynamic Sizes of Single Bacterium-Laden Expiratory Aerosols Using Stochastic Modeling With Experimental Validation
,”
Aerosol Sci. Technol.
,
46
(
1
), pp.
1
12
.10.1080/02786826.2011.604108
8.
Ziskind
,
G.
,
Fichman
,
M.
, and
Gutfinger
,
C.
,
1995
, “
Resuspension of Particulate From Surfaces to Turbulent Flows – Review and Analysis
,”
J. Aerosol Sci.
,
26
(
4
), pp.
613
644
.10.1016/0021-8502(94)00139-P
9.
Cleaver
,
J.
, and
Yates
,
B.
,
1973
, “
Mechanism of Detachment of Colloidal Particles From a Flat Substrate in a Turbulent Flow
,”
J. Colloid Interface Sci.
,
44
(
3
), pp.
464
474
.10.1016/0021-9797(73)90323-8
10.
Wen
,
H. Y.
, and
Kasper
,
G.
,
1989
, “
On the Kinetics of Particle Reentrainment From Surfaces
,”
J. Aerosol Sci.
,
20
, pp.
483
498
.10.1016/0021-8502(89)90082-7
11.
Reeks
,
M. W.
, and
Hall
,
D.
,
2001
, “
Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement
,”
J. Aerosol Sci.
,
32
, pp.
1
31
.10.1016/S0021-8502(00)00063-X
12.
Reeks
,
M. W.
,
Reed
,
J. R.
, and
Hall
,
D.
,
1988
, “
The Resuspension of Small Particles by a Turbulent Flow
,”
J. Phys. D
,
21
, pp.
574
589
.10.1088/0022-3727/21/4/006
13.
Reeks
,
M. W.
, and
Hall
,
D.
,
1988
, “
Deposition and Resuspension of Gas-Borne Particles in Recirculating Turbulent Flows
,”
ASME J. Fluids Eng.
,
110
(
2
), pp.
165
171
.10.1115/1.3243530
14.
Ziskind
,
G.
,
Fichman
,
M.
, and
Gutfinger
,
C.
,
2000
, “
Particle Behavior on Surfaces Subjected to External Excitations
,”
J. Aerosol Sci.
,
31
(
6
), pp.
703
719
.10.1016/S0021-8502(99)00554-6
15.
Ibrahim
,
A. H.
,
Dunn
,
P. F.
, and
Brach
,
R. M.
,
2003
, “
Microparticle Detachment From Surfaces Exposed to Turbulent Air Flow: Controlled Experiments and Modeling
,”
J. Aerosol Sci.
,
34
, pp.
765
782
.10.1016/S0021-8502(03)00031-4
16.
Guingo
,
M.
, and
Minier
,
J.-P.
,
2008
, “
A New Model for the Simulation of Particle Resuspension by Turbulent Flows Based on a Stochastic Description of Wall Roughness and Adhesion Forces
,”
J. Aerosol Sci.
,
39
, pp.
957
973
.10.1016/j.jaerosci.2008.06.007
17.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
, Chap. 7,8,12.
18.
Lai
,
Y. G.
, and
So
,
R. M. C.
,
1990
, “
On Near-Wall Turbulent Flow Modeling
,”
J. Fluid Mech.
,
221
, pp.
641
673
.10.1017/S0022112090003718
19.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, 2nd ed.,
Wiley
,
New York
, Chap. 4.
20.
Minier
,
J. P.
, and
Peirano
,
E.
,
2001
, “
The PDF Approach to Turbulent Polydispersed Two-Phase Flows
,”
Phys. Rep.
,
352
, pp.
1
214
.10.1016/S0370-1573(01)00011-4
21.
Gardiner
,
C. W.
,
2004
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, 3rd ed.,
Springer
,
Berlin
, Chap. 3.
22.
Lai
,
A. C. K.
,
Byrne
,
M. A.
, and
Goddard
,
A. J. H.
,
1998
, “
Aerosol Deposition in Turbulent Channel Flow—Implications for Indoor Air Quality Control
,”
J. Aerosol Sci.
,
29
(
1–2
), p.
231
.10.1016/S0021-8502(98)90260-9
23.
Lai
,
A. C. K.
,
Byrne
,
M. A.
, and
Goddard
,
A. J. H.
,
2001
, “
Aerosol Deposition in Turbulent Channel Flow on a Regular Array of Three-Dimensional Roughness Elements
,”
J. Aerosol Sci.
,
32
(
1
), pp.
121
137
.10.1016/S0021-8502(00)00051-3
24.
Wang
,
M.
,
Lin
,
C.-H.
, and
Chen
,
Q.
,
2011
, “
Determination of Particle Deposition in Enclosed Spaces by Detached Eddy Simulation With the Lagrangian Method
,”
Atmos. Environ.
,
30
, pp.
5376
5384
.10.1016/j.atmosenv.2011.06.042
25.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
186
.10.1017/S0022112087000892
26.
So
,
R. M. C.
,
Lai
,
Y. G.
,
Zhang
,
H. S.
, and
Hwang
,
B. C.
,
1991
, “
Second-Order Near Wall Turbulence Closures: A Review
,”
AIAA J.
,
29
(
11
), pp.
1819
1835
.10.2514/3.10807
27.
So
,
R. M. C.
,
Aksoy
,
H.
,
Yuan
,
S. P.
, and
Sommer
,
T. P.
,
1996
, “
Modeling Reynolds-Number Effects in Wall-Bounded Turbulent Flows
,”
ASME J. Fluids Eng.
,
118
(2), pp.
260
267
.10.1115/1.2817372
28.
O'Neill
,
M.
,
1968
, “
A Sphere in Contact With a Plane in a Slow Shear Linear Flow
,”
Chem. Eng. Sci.
,
23
, pp.
1293
1298
.10.1016/0009-2509(68)89039-6
29.
Maude
,
A.
,
1963
, “
The Movement of a Sphere in Front of a Plane at Low Reynolds Number
,”
Br. J. Appl. Phys.
,
14
, pp.
894
898
.10.1088/0508-3443/14/12/316
30.
Mollinger
,
A. M.
, and
Nieuwstadt
,
F. T. M.
,
1996
, “
Measurement of the Lift Force on a Particle Fixed to the Wall in the Viscous Sublayer of a Fully Developed Turbulent Boundary Layer
,”
J. Fluid Mech.
,
316
, pp.
285
306
.10.1017/S0022112096000547
31.
Zhou
,
H.
,
Götzinger
,
M.
, and
Peukert
,
W.
,
2003
, “
The Influence of Particle Charge and Roughness on Particle-Substrate Adhesion
,”
Powder Technol.
,
135–136
, pp.
82
91
.10.1016/j.powtec.2003.08.007
32.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. A
,
324
, pp.
301
313
.10.1098/rspa.1971.0141
33.
Reed
,
J. R.
, and
Rochowiak
,
P.
,
1988
, “
The Adhesion of Small Particles to a Surface
,”
Proceedings of the 2nd Conference of the Aerosol Society
,
Pergamon Press
,
Oxford, UK
.
You do not currently have access to this content.