The structure of laminar incompressible flow in a two-dimensional horizontal channel past a triangular cylinder undergoing vertical oscillating motion is simulated using the finite element method. The oscillating motion is carried out for a fixed Reynolds number equal to 100 and dimensionless oscillating amplitudes of 0.125, 0.25, 0.5, and 1, while the dimensionless forced oscillation frequencies are chosen from St/4 to 4 St, where St is the natural Strouhal number of a stationary triangular cylinder. The arbitrary Lagrangian–Eulerian kinematics is utilized to simulate the oscillating motion. The present problem is first solved for a stationary triangular cylinder to obtain the natural Strouhal number. Then, the fluid dynamics for an oscillating triangular cylinder are solved in terms of instantaneous drag and lift, mean of drag, and root mean square (RMS) of lift coefficients. Detailed illustrations of flow streamlines and vortices contours are presented. The results indicate that when the oscillating frequency is equal to the natural Strouhal number of the stationary cylinder, the RMS of lift coefficient reaches its maximum and the oscillating amplitude has no effect at high oscillating frequency.

References

1.
Stremler
,
M.
,
Salmanzadeh
,
A.
,
Basu
,
S.
, and
Williamson
,
C.
,
2011
, “
A Mathematical Model of 2P and 2C Vortex Wakes
,”
J. Fluids Struct.
,
27
, pp.
774
783
.10.1016/j.jfluidstructs.2011.04.004
2.
Morse
,
T.
, and
Williamson
,
C.
,
2009
, “
Fluid Forcing, Wake Modes, and Transitions for a Cylinder Undergoing Controlled Oscillations
,”
J. Fluids Struct.
,
25
, pp.
697
712
.10.1016/j.jfluidstructs.2008.12.003
3.
Singh
,
S.
, and
Mittal
,
S.
,
2005
, “
Vortex-Induced Oscillations at Low Reynolds Numbers: Hysteresis and Vortex-Shedding Modes
,”
J. Fluids Struct.
,
20
, pp.
1085
1104
.10.1016/j.jfluidstructs.2005.05.011
4.
Nobari
,
M.
, and
Naderan
,
H.
,
2006
, “
A Numerical Study of Flow Past a Cylinder With Cross Flow and Inline Oscillation
,”
Comput. Fluids
,
35
, pp.
393
415
.10.1016/j.compfluid.2005.02.004
5.
Zheng
,
Z.
, and
Zhang
,
N.
,
2008
, “
Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder
,”
J. Fluids Struct.
,
24
, pp.
382
399
.10.1016/j.jfluidstructs.2007.08.010
6.
Alawadhi
,
E.
,
2010
, “
Laminar Forced Convection Flow Past an In-Line Elliptical Cylinder Array With Inclination
,”
ASME J. Heat Transfer
,
132
(7), p.
071701
.10.1115/1.4000061
7.
Sutherland
,
B.
, and
Linden
,
P.
,
2002
, “
Internal Wave Excitation by a Vertically Oscillating Elliptical Cylinder
,”
Phys. Fluids
,
14
, pp.
721
731
.10.1063/1.1430438
8.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2010
, “
Numerical Simulation of Flow Past Row of Square Cylinders for Various Separation Ratios
,”
Comput. Fluids
,
39
, pp.
49
59
.10.1016/j.compfluid.2009.07.002
9.
Kahawita
,
R.
, and
Wang
,
P.
,
2002
, “
Numerical Simulation of the Wake Flow Behind Trapezoidal Bluff Bodies
,”
Comput. Fluids
,
31
, pp.
99
112
.10.1016/S0045-7930(01)00015-9
10.
De
,
A.
, and
Dalal
,
A.
,
2006
, “
Numerical Simulation of Unconfined Flow Past a Triangular Cylinder
,”
Int. J. Numer. Meth. Fluids
,
52
, pp.
801
821
.10.1002/fld.1210
11.
Srikanth
,
S.
,
Dhiman
,
A.
, and
Bijjam
,
S.
,
2010
, “
Confined Flow and Heat Transfer Across a Triangular Cylinder in a Channel
,”
Int. J. Therm. Sci.
,
49
, pp.
2191
2200
.10.1016/j.ijthermalsci.2010.06.010
12.
Bao
,
Y.
,
Zhou
,
D.
, and
Zhao
,
Y.
,
2010
, “
A Two-Step Taylor-Characteristic-Based Galerkin Method for Incompressible Flows and Its Application to Flow Over Triangular Cylinder With Different Incidence Angles
,”
Int. J. Numer. Meth. Fluids
,
62
, pp.
1181
1208
.10.1002/fld.2054
13.
Farhadi
,
M.
,
Sedighi
,
K.
, and
Korayem
,
A.
,
2010
, “
Effect of Wall Proximity on Forced Convection in a Plane Channel With Built-In Triangular Cylinder
,”
Int. J. Therm. Sci.
,
49
, pp.
1010
1018
.10.1016/j.ijthermalsci.2009.12.013
14.
Camarri
,
S.
,
Salvetti
,
M.
, and
Buresti
,
G.
,
2006
, “
Large-Eddy Simulation of the Flow Around a Triangular Prism With Moderate Aspect Ratio
,”
J. Wind Eng. Ind. Aerodyn.
,
94
, pp.
309
322
.10.1016/j.jweia.2006.01.003
15.
Ali
,
M.
, and
Nuhait
,
Z.
,
2011
, “
Forced Convection Heat Transfer Over Horizontal Cylinder in Cross Flow
,”
Int. J. Therm. Sci.
,
50
, pp.
106
114
.10.1016/j.ijthermalsci.2010.09.007
16.
Abbassi
,
H.
,
Turki
,
S.
, and
Ben Nasrallah
,
S.
,
2001
, “
Mixed Convection in a Plane Channel With a Built-In Triangular Prism
,”
Numer. Heat Transfer, Part A
,
39
, pp.
307
320
.10.1080/104077801300006607
17.
Williamson
,
C.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
, pp.
713
735
.10.1016/j.jweia.2007.06.019
18.
Srigrarom
,
S.
, and
Koh
,
A.
,
2008
, “
Flow Field of Self-Excited Rotationally Oscillating Equilateral Triangular Cylinder
,”
J. Fluids Struct.
,
24
, pp.
750
755
.10.1016/j.jfluidstructs.2007.10.015
19.
Huhes
,
T.
,
Liu
,
W.
, and
Zimmermann
,
T.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flow
,”
Comput. Methods Appl. Mech. Eng.
,
29
, pp.
329
349
.10.1016/0045-7825(81)90049-9
20.
Jaroslar
,
M.
,
1999
, “
Finite Element and Boundary Element Applied in Phase Change: Solidification and Melting Problem—A Bibliography (1996–1998)
,”
Finite Elem. Anal. Design
,
32
, pp.
203
311
.10.1016/S0168-874X(99)00007-4
21.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publisher
,
New York
.
22.
AIAA
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,”
AIAA Paper No. G-077-1998
.
23.
Fey
,
U.
,
Konig
,
M.
, and
Eckelmann
,
H.
,
1998
, “
A New Strouhal-Reynolds-Number Relationship for the Circular Cylinder in the Range 47 < Re < 2×105
,”
Phys. Fluids
,
10
, pp.
1547
1549
.10.1063/1.869675
24.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
, pp.
355
381
.10.1016/S0889-9746(88)90058-8
25.
Placzek
,
A.
,
Sigrist
,
J.
, and
Hamdouni
,
A.
,
2009
, “
Numerical Simulations of an Oscillating Cylinder in a Cross-Flow at Low Reynolds Number: Forced and Free Oscillations
,”
Comput. Fluids
,
38
, pp.
80
100
.10.1016/j.compfluid.2008.01.007
You do not currently have access to this content.