The 3D flow structure induced by a normal shock-wave/boundary-layer interaction in a transonic diffuser is experimentally and computationally investigated. In the diffuser, the shock wave is located in the diverging section. The experiments are done with wall pressure measurements, oil-flow surface visualization, and Mach number measurements with a laser-induced fluorescence (LIF) method. In the computational work, the Reynolds-averaged Navier–Stokes equations are numerically solved with the k-ω two-equation turbulence model. The numerical solution agrees reasonably well with the experiment and clarifies the vortex structure in the interaction zone along with the 3D behavior of the boundary layer downstream of the shock wave. A careful investigation of the calculated flow reveals that the vortices are generated at the foot of the shock wave. It is also found that a complicated wave configuration is formed near the diffuser corner. A flow model is constructed by considering this wave configuration. This model explains the 3D flow characteristics in the transonic diffuser very well.

References

1.
Chriss
,
R. M.
,
Hingst
,
W. R.
,
Strazisar
,
A. J.
, and
Keith
,
T. G.
,
1990
, “
An LDA Investigation of the Normal Shock Wave Boundary Layer Interaction
,”
Rech. Aérosp.
,
1990-2
, pp.
1
15
.
2.
Handa
,
T.
,
Masuda
,
M.
, and
Matsuo
,
K.
,
2005
, “
Three-Dimensional Normal Shock-Wave/Boundary-Layer Interaction in a Rectangular Duct
,”
AIAA J.
,
43
(
10
), pp.
2182
2187
.10.2514/1.12976
3.
Bruce
,
P. J. K.
,
Burton
,
D. M. F.
,
Titchener
,
N. A.
, and
Babinsky
,
H.
,
2011
, “
Corner Effect and Separation in Transonic Channel Flows
,”
J. Fluid Mech.
,
679
, pp.
247
262
.10.1017/jfm.2011.135
4.
Doerffer
,
P.,
and
Dallmann
,
U.
,
1989
, “
Reynolds Number Effect on Separation Structures at Normal Shock Wave/Turbulent Boundary-Layer Interaction
,”
AIAA J.
,
27
(
9
), pp.
1206
1212
.10.2514/3.10247
5.
Bogar
,
T. J.
,
Sajben
,
M.
, and
Kroutil
,
J. C.
,
1983
, “
Characteristic Frequencies of Transonic Diffuser
Flow Oscillations,”
AIAA J.
,
21
(
9
), pp.
1232
1240
.10.2514/3.8234
6.
Inoue
,
M.
,
Muraishi
,
T.
,
Masuda
,
M.
, and
Natsunari
,
K.
,
1990
, “
Visualization of Transonic Flow in Curved Nozzle With Rectangular Cross-Section by Laser-Induced Fluorescence Method
,”
J. Visual. Soc. Jpn
,
10
(
2
), pp.
103
106
(in Japanese).10.3154/jvs.10.Supplement2_103
7.
Inoue
,
M.
,
Masuda
,
M.
, and
Muraishi
,
T.
,
1991
, “
Visualization of Transonic Nozzle Flow by Laser-Induced Fluorescence Method
,”
J. Visual. Soc. Jpn
,
11
(
2
), pp.
39
42
(in Japanese).10.3154/jvs.11.Supplement2_39
8.
Hartfield
,
R. J.
,
Hollo
,
S. D.
, and
McDaniel
,
J. C.
,
1991
, “
Planar Temperature Measurement in Compressible Flows Using Laser-Induced Fluorescence
,”
Opt. Lett.
,
16
(
2
), pp.
106
108
.10.1364/OL.16.000106
9.
Soga
,
T.,
and
Niwa
,
K.
,
1985
, “
On the Rotational and Translational Nonequilibrium in an Underexpanded Free Jet of Nitrogen
,”
J. Jpn Soc. Aeronaut. Space Sci.
,
28
, pp.
16
26
.
10.
Carroll
,
B. F.
,
Lopez-Fernandez
,
P. A.
, and
Dutton
,
J. C.
,
1993
, “
Computations and Experiments for a Multiple Normal Shock/Boundary-Layer Interaction
,”
J. Propul. Power
,
9
(
3
), pp.
405
411
.10.2514/3.23636
11.
Cahen
,
J.
,
Couaillier
,
V.
,
Delery
,
J.
, and
Pot
,
T.
,
1995
Validation of Code Using Turbulence Model Applied to Three-Dimensional Transonic Channel
,”
AIAA J.
,
33
(
4
), pp.
671
679
.10.2514/3.12385
12.
McMillin
,
B. K.
,
Lee
,
M. P.
, and
Hanson
,
R. K.
,
1992
, “
Planar Laser-Induced Fluorescence Imaging of Shock-Tube Flows With Vibrational Nonequilibrium
,”
AIAA J.
,
30
(
2
), pp.
436
443
.10.2514/3.10935
13.
Inoue
,
M.
,
Masuda
,
M.
,
Muraishi
,
M.
, and
Hyakutake
,
Y.
,
1992
, “
Temperature Measurement of Transonic Nozzle Flow by Laser-Induced Fluorescence Method
,”
Proceedings of the 6th International Symposium on Flow Visualization
, pp.
525
529
.
14.
Sajben
,
M.,
and
Kroutil
,
J. C.
,
1980
, “
Effects of Approach Boundary-Layer Thickness on Oscillating, Transonic Diffuser Flows Inducing a Shock Wave
,” AIAA Paper No. 347.
15.
Handa
,
T.
,
Masuda
,
M.
, and
Matsuo
,
K.
,
2003
, “
Mechanism of Shock Wave Oscillation in Transonic Diffusers
,”
AIAA J.
,
41
(
1
), pp.
64
70
.10.2514/2.1914
16.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
17.
Wilcox
,
D. C.
,
1992
, “
Dilatation-Dissipation Corrections for Advanced Turbulence Models
,”
AIAA J.
,
30
(
11
), pp.
2639
2646
.10.2514/3.11279
18.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.10.1016/0021-9991(81)90128-5
19.
Yamamoto
,
S.,
and
Daiguji
,
H.
,
1993
, “
High-Order-Accurate Upwind Schemes for Solving the Compressible Euler and Navier–Stokes Equations
,”
Comput. Fluids
,
22
, pp.
259
270
.10.1016/0045-7930(93)90058-H
20.
Anderson
,
J. D.
,
1995
,
Computational Fluid Dynamics
,
McGraw-Hill
,
New York
, pp.
301
303
.
21.
Liou
,
M.-S.
, and
Coakley
,
T. J.
,
1984
, “
Numerical Simulations of Unsteady Transonic Flow in Diffusers
,”
AIAA J.
,
22
(
8
), pp.
1139
1145
.10.2514/3.48553
22.
Perkins
,
H. J.
,
1970
, “
The Formation of Streamwise Vorticity in Turbulent Flow
,”
J. Fluid Mech.
,
44
, pp.
721
740
.10.1017/S0022112070002112
23.
Gessner
,
F. B.
,
1973
, “
The Origin of Secondary Flow in Turbulent Flow Along a Corner
,”
J. Fluid Mech.
,
58
, pp.
1
25
.10.1017/S0022112073002090
24.
Gavrilakis
,
S.
,
1992
, “
Numerical Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
,
244
, pp.
101
129
.10.1017/S0022112092002982
You do not currently have access to this content.