In order to study the capability of computational methods in investigating the mechanisms associated with disease and contaminants transmission in aircraft cabins, the computational fluid dynamics (CFD) models are used for the simulation of turbulent airflow and tracer gas diffusion in a generic aircraft cabin mockup. The CFD models are validated through the comparisons of the CFD predictions with corresponding experimental measurements. It is found that using large eddy simulation (LES) with the Werner-Wengle wall function, one can predict unsteady airflow velocity field with relatively high accuracy. However in the middle region of the cabin mockup, where the recirculation of airflow takes place, the accuracy is not as good as that in other locations. By examining different k-ε models, the current study recommends the use of the RNG k-ε model with the nonequilibrium wall function as an Reynolds averaged Navier-Stokes model for predicting the steady-state airflow velocity. It is also found that changing the nozzle height has a significant effect on the flow behavior in the middle and upper part of the cabin, while the flow pattern in the lower part is not affected as much. Through the use of LES and species transport model in simulating tracer gas diffusion, a very good agreement between predicted and measured tracer gas concentration is achieved for some monitoring locations, but the agreement level is not uniform for all the locations. The reasons for the deviations between prediction and measurement for those locations are discussed.

References

1.
Occupational Outlook Handbook,
2011
,
Bureau of Labor Statistics
, 2010-11 Edition, June 10, 2011, http://www.bls.gov/oco/ocos107.htm.
2.
National Transportation Statistics
,
2010
, Bureau of Transportation, June 10, 2011, http://www.bts.gov
3.
Garner
,
R. P.
,
Wong
,
K. L.
,
Ericson
,
S. C.
,
Baker
,
A. J.
, and
Orzechowaki
,
J. A.
,
2004
, “
CFD Validation for Contaminant Transport in Aircraft Cabin Ventilation Fields
,” U.S. Department of Transportation and Federal Aviation Administration, Office of Aerospace Medicine, Washington DC, Report No. DOT/FAA/AM-04/7.
4.
Lin
,
C. H.
,
Horstman
,
R. H.
,
Ahlers
,
M. F.
,
Sedgwick
,
L. M.
,
Dunn
,
K. H.
,
Topmiller
,
J. L
,
Bennett
,
J. S.
, and
Wirogo
,
S.
,
2005
, “
Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins–Part I: Numerical Simulation of the Flow Field
,”
ASHRAE Trans.
,
111
, pp.
755
763
.
5.
Lin
,
C. H.
,
Horstman
,
R. H.
,
Ahlers
,
M. F.
,
Sedgwick
,
L. M.
,
Dunn
,
K. H.
,
Topmiller
,
J. L
,
Bennett
,
J. S.
,
Wirogo
,
2005
, “
Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins–Part II: Numerical Simulation of Airborne Pathogen Transport
,”
ASHRAE Trans.
,
111
, pp.
764
768
.
6.
Lin
,
C. H.
,
Horstman
,
R. H.
,
Lebbin
,
P. A.
,
Hosni
,
M. H.
,
Jones
,
B. W
, and
Beck
,
B. T.
,
2006
, “
Comparison of Large Eddy Simulation Predictions With Particle Image Velocimetry Data for the Airflow in a Generic Cabin
,”
HVAC&R Special Issue
,
12
(
3c
), pp.
935
951
.10.1080/10789669.2006.10391218
7.
Tang
,
Y.
,
Ratko
,
D.
, and
Wang
,
X.
,
2009
, “
3D Numerical Simulation of Contaminant Distribution in an Aircraft
,”
Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition
,
Lake Buena Vista, FL
, Paper No. IMECE2009-13214.
8.
Yan
,
W.
,
Zhang
,
Y.
,
Sun
,
Y.
, and
Li
,
D.
,
2009
, “
Experimental and CFD Study of Unsteady Airborne Pollutant Transport Within an Aircraft Cabin Mock-up
,”
Build. Environ.
,
44
(
1
), pp.
34
43
.10.1016/j.buildenv.2008.01.010
9.
Su
,
M.
,
Chen
,
Q.
, and
Chiang
,
C. M.
,
2001
, “
Comparison of Different Sub-Grid-Scale Models of Large Eddy Simulation for Indoor Airflow Modeling
,”
ASME J. Fluids Eng.
,
123
, pp.
628
639
.10.1115/1.1378294
10.
Zhao
,
B.
,
Li
,
X.
, and
Yan
,
Q.
,
2003
, “
A Simplified System for Indoor Airflow Simulation
,”
Building Environ.
,
38
(
4
), pp.
543
552
.10.1016/S0360-1323(02)00182-8
11.
Zhang
,
T.
, and
Chen
,
Q.
,
2007
, “
Novel Air Distribution Systems for Commercial Aircraft Cabins
,”
Building Environ.
,
42
(
4
), pp.
1675
1684
.10.1016/j.buildenv.2006.02.014
12.
Liu
,
W.
,
Zhang
,
Z.
,
Poussou
,
B. S.
,
Liu
,
J.
,
Lin
,
C. H.
, and
Chen
,
Q.
,
2012
, “
State-of-the-Art Methods for Studying Air Distribution in Commercial Airliner Cabins
,”
Building Environ.
,
47
, pp.
5
12
.10.1016/j.buildenv.2011.07.005
13.
Abdilghanie
,
A. M.
,
Collins
,
L. R.
, and
Caughey
,
D. A.
,
2009
, “
Comparison of Turbulence Modeling Strategies for Indoor Flows
,”
ASME J. Fluids Eng.
,
131
, p.
051402
.10.1115/1.3112386
14.
Lebbin
,
P. A.
,
2006
, “
Experimental and Numerical Analysis of Air, Tracer Gas and Particulate Movement in a Large Eddy Simulation Chamber
,” Ph.D. thesis, Kansas State University, Manhattan, KS.
15.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
16.
Lilly
,
D. K.
,
1966
, “
On the Application of the Eddy Viscosity Concept in the Internal Sub-Range of Turbulences
,” National Center for Atmospheric Research, Boulder, CO, Manuscript No. 123.
17.
Fluent 6.3 User's Manual Guide,
2008
, Nov. 12, 2011, http:/my.fit.edu/itresources/manuals/fluent6.3
18.
Werner.
H.
, and
Wengle
,
H.
,
1993
, “
Large Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Selected Papers from the 8th Symposium on Turbulent Shear Flows
,
F.
Durst
,
R.
Friedrich
,
B. E.
Launder
,
U.
Schumann
, and
J. H.
Whitelaw
, eds.,
Springer
,
New York
, pp.
155
168
.
19.
Bird
,
B. R.
,
Steward
,
W. E.
, and
Lightfoot
,
E. N.
,
2001
,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
20.
Landahl
,
M. T.
, and
Mollo-Christensen
,
M.
,
1992
,
Turbulence and Random Processes in Fluid Mechanics
, 2nd ed.,
Cambridge
,
UK
.
21.
Smirnov
,
R.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
, pp.
359
371
.10.1115/1.1369598
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic
,
New York
.
23.
Yakhot
,
V.
, and
Orszag.
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
,
1
(
3
), pp.
1
51
.10.1007/BF01061452
24.
Shih
,
T. H.
,
Lieu
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows–Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
25.
Padilla
,
A. M.
,
2008
, “
Experimental Analysis of Particulate Movement in a Large Eddy Simulation Chamber
,” M.S. thesis, Kansas State University, Manhattan, KS.
You do not currently have access to this content.