In this work an electromagnetically actuated membrane pump, which allows flow reversion with a simple rotation of its valve system, is presented as a proof of concept. The valve system combines two symmetrical ball check-valves (SBCV), fabricated using laser machining techniques on PMMA (poly-methyl methacrylate) and PDMS (polydimethylsiloxane). The best efficiencies were achieved using glass balls within the SBCVs. This configuration provides flow rates from 0.2 to 6.0 ml/min with pressures up to 7 kPa. We also present a model which allows simulating the pumping behavior qualitatively, including the reversion after the rotation. The main advantages of the presented pump are wide range flow rates, low driving voltage (below 30 V), same pressure and flow rate in both direct and reverse pumping modes, and easily scalable to both bigger and smaller dimensions.

References

1.
Tay
,
F. E. H.
,
2002
,
Microfluidics and BioMEMS
,
Springer
,
Boston, MA
, pp.
3
24
.
2.
Laser
,
D. J.
, and
Santiago
,
J. G.
,
2004
, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
(
6
), pp.
35
64
.10.1088/0960-1317/14/6/R01
3.
Smistrup
,
K.
, and
Stone
,
H. A.
,
2007
, “
A Magnetically Actuated Ball Valve Applicable for Small-Scale Fluid Flows
,”
Phys. Fluids
,
19
(
6
), pp.
1
9
.10.1063/1.2717690
4.
Pan
,
T.
,
McDonald
,
S. J.
,
Kai
,
E. M.
, and
Ziaie
,
B.
,
2007
, “
A Magnetically Driven PDMS Micropump With Ball Check-Valves
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
1021
1026
.10.1088/0960-1317/15/5/018
5.
Yamahata
,
C.
,
Lacharme
,
F.
,
Matter
,
J.
,
Schnydrig
,
S.
,
Burri
,
Y.
, and
Gijs
,
M. A. M.
,
2005
, “
A Ball Valve Micropump in Glass Fabricated by Powder Blasting
,”
Sensors Actuators B
110
(
1
), pp.
1
7
.10.1016/j.snb.2005.01.005
6.
Shen
,
M.
,
Yamahata
,
C.
, and
Gijs
,
M. A. M.
,
2008
, “
Miniaturized PMMA Ball-Valve Micropump With Cylindrical Electromagnetic Actuator
,”
Microelectron. Eng.
,
85
(
6
), pp.
1104
1107
.10.1016/j.mee.2007.12.013
7.
Nguyen
,
N.
, and
Wereley
,
S. T.
,
2002
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Norwood, MA
, pp.
1
8
.
8.
Iverson
,
B.
, and
Garimell
,
S. V.
,
2008
, “
Recent Advances in Microscale Pumping Technologies: A Review and Evaluation
,”
Microfluid. Nanofluid.
,
5
(
2
),pp.
145
174
.10.1007/s10404-008-0266-8
9.
Woias
,
P.
,
2005
, “
Micropumps—Past, Progress and Future Prospects
,”
Sensors Actuators B
,
105
(
1
), pp.
28
38
.10.1016/j.snb.2004.02.033
10.
Zengerle
,
R.
,
Kluge
,
S.
,
Richter
,
M.
, and
Richter
,
A.
,
1995
, “
A Bidirectional Silicon Micropump
,”
Sensors Actuators A
,
50
(
1
), pp.
81
86
.10.1016/0924-4247(96)80088-4
11.
Luo
,
Y.
,
Lu
,
M.
, and
Cui
,
T.
,
2011
, “
A Polymer-Based Bidirectional Micropump Driven by a PZT Bimorph
,”
Microsyst. Technol.
,
17
(
3
), pp.
403
409
.10.1007/s00542-010-1199-1
12.
Lee
,
D. S.
,
Yoon
,
H. C.
, and
Ko
,
J. S.
,
2004
, “
Fabrication and Characterization of a Bidirectional Valveless Peristaltic Micropump and its Application to a Flow-type Immunoanalysis
,”
Sensors Actuators B
,
103
(
1
), pp.
409
415
.10.1016/j.snb.2004.04.081
13.
Yoon
,
J.
,
Yoon
,
H. C.
, and
Kim
,
M. S.
,
2007
, “
A Valveless Micropump for Bidirectional Applications
,”
Sensors Actuators A
,
135
(
2
), pp.
833
838
.10.1016/j.sna.2006.08.017
14.
Doll
,
A.
,
Heinrichs
,
M.
,
Goldschmidtboeing
,
F.
,
Schrag
,
H. J.
,
Hopt
,
U. T.
, and
Woias
,
P.
,
2006
, “
A High Performance Bidirectional Micropump for a Novel Artificial Sphincter System
,”
Sensors Actuators A
,
130
(
1
), pp.
445
453
.10.1016/j.sna.2005.10.018
15.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
,
New York
, pp.
71
90
.
You do not currently have access to this content.