This paper presents an experimental study of three-phase flows (air-water-sand) inside a horizontal pipe. The results obtained aim to enhance the fundamental understanding of sand transportation due to saltation in the presence of a gas-liquid two-phase intermittent flow. Sand dune pitch, length, height, and front velocity were measured using high-speed video photography. Four flow compositions with differing gas ratios, including hydraulic conveying, were assessed for sand transportation, having the same mixture velocity. For the test conditions under analysis, it was found that the gas ratio did not affect the average dune front velocity. However, for intermittent flows, the sand bed was transported further downstream relative to hydraulic conveying. It was also observed that the slug body significantly influences sand particle mobility. The physical mechanism of sand transportation was found to be discontinuous with intermittent flows. The sand dune local velocity (within the slug body) was measured to be three times higher than the averaged dune velocities, due to turbulent enhancement within the slug body.

1.
Peysson
,
Y.
, 2004, “
Solid/Liquid Dispersions in Drilling and Production
,”
Oil Gas Sci. Technol.
,
59
(
1
), pp.
11
21
.
2.
Takahashi
,
H.
,
Masuyama
,
T.
, and
Noda
,
K.
, 1989, “
Unstable Flow of a Solid-Liquid Mixture in a Horizontal Pipe
,”
Int. J. Multiphase Flow
0301-9322,
15
(
5
), pp.
831
841
.
3.
Takahashi
,
H.
, and
Masuyama
,
T.
, 1991, “
Stability Criterion for the Surface of the Deposit Bed of Solid-Liquid Flows in Horizontal Pipes
,”
J. Chem. Eng. Jpn.
0021-9592,
24
(
3
), pp.
319
325
.
4.
Mandhane
,
J. M.
, and
Aziz
,
K.
, 1974, “
A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
1
(
4
), pp.
537
553
.
5.
Fabre
,
J.
, and
Line
,
A.
, 1992, “
Modeling of Two-Phase Slug Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
24
, pp.
21
46
.
6.
Manolis
,
I. G.
, 1995 “
High Pressure Gas-Liquid Slug Flow
,” Ph.D. thesis, University of London, London, UK.
7.
Gopal
,
M.
, and
Jepson
,
W. P.
, 1998, “
The Study of Dynamic Slug Flow Characteristics
,”
ASME J. Energy Resour. Technol.
0195-0738,
120
, pp.
102
105
.
8.
Rosa
,
E. S.
, 2004, “
Slug Flow Structure in Horizontal Slug Flow
,”
Therm. Eng.
0040-6015,
3
(
2
), pp.
151
160
.
9.
Brennen
,
C. E.
, 2005,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, England
.
10.
Woods
,
B. D.
,
Fan
,
Z.
, and
Hanratty
,
T. J.
, 2006, “
Frequency and Development of Slugs in a Horizontal Pipe at Large Liquid Flows
,”
Int. J. Multiphase Flow
0301-9322,
32
(
8
), pp.
902
925
.
11.
Ujang
,
P. M.
,
Lawrence
,
C. J.
,
Hale
,
C. P.
, and
Hewitt
,
G. F.
, 2006, “
Slug Initiation and Evolution in Two-Phase Horizontal Flow
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
527
552
.
12.
Valluri
,
P.
,
Spelt
,
P. D. M.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
, 2008, “
Numerical Simulation of the Onset of Slug Initiation in Laminar Horizontal Channel Flow
,”
Int. J. Multiphase Flow
0301-9322,
34
, pp.
206
225
.
13.
Kadri
,
U.
,
Mudde
,
R. F.
,
Oliemans
,
R. V. A.
,
Bonizzi
,
M.
, and
Andreussi
,
P.
, 2009, “
Prediction of the Transition From Stratified to Slug Flow or Roll Waves in Gas-Liquid Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
1001
1010
.
14.
Kadri
,
U.
,
Zoeteweij
,
M. L.
,
Mudde
,
R. F.
, and
Oliemans
,
R. V. A.
, 2009, “
A Growth Model for Dynamics Slugs in Gas-Liquid Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
439
449
.
15.
Goharzadeh
,
A.
, and
Rodgers
,
P.
, 2009, “
Experimental Characterization of Slug Flow Velocity Distribution in Two Phase Pipe Flow
,”
ASME
Paper No. IMECE2009-11201.
16.
Rogero
,
E. C.
, 2009, “
Experimental Investigation of Developing Plug and Slug Flows
,” Ph.D. thesis, Technical University of Munich, München.
17.
Oroskar
,
A. R.
, and
Turian
,
R. M.
, 1980, “
The Critical Velocity in Pipeline Flow of Slurries
,”
AIChE J.
0001-1541,
26
(
4
), pp.
550
558
.
18.
Turian
,
R. M.
,
Hsu
,
F. L.
, and
Ma
,
T. W.
, 1987, “
Estimation of the Critical Velocity in Pipeline Flow of Slurries
,”
Powder Technol.
0032-5910,
51
, pp.
35
47
.
19.
Doron
,
P.
, and
Barnea
,
D.
, 1996, “
Flow Pattern Maps for Solid-Liquid Flow in Pipes
,”
Int. J. Multiphase Flow
0301-9322,
22
(
2
), pp.
273
83
.
20.
Matousek
,
V.
, 2002, “
Pressure Drops and Flow Patterns in Sand Mixture Pipes
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
693
702
.
21.
Skudarnov
,
P. V.
, and
Lin
,
C. X.
, 2004, “
Double-Species Slurry Flow in a Horizontal Pipeline
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
125
132
.
22.
Ramadan
,
A.
,
Skalleb
,
P.
, and
Saasenc
,
A.
, 2005, “
Application of a Three-Layer Modeling Approach for Solids Transport in Horizontal and Inclined Channels
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
2557
2570
.
23.
Kaushal
,
D. R.
,
Sato
,
K.
,
Toyota
,
T.
,
Funatsu
,
K.
, and
Tomita
,
Y.
, 2005, “
Effect of Particle Size Distribution on Pressure Drop and Concentration Profile in Pipeline Flow of Highly Concentrated Slurry
,”
Int. J. Multiphase Flow
0301-9322,
31
(
7
), pp.
809
823
.
24.
Matoušek
,
V.
, 2009, “
Predictive Model for Frictional Pressure Drop in Settling-Slurry Pipe With Stationary Deposit
,”
Powder Technol.
0032-5910,
192
, pp.
367
374
.
25.
Ouriemi
,
M.
,
Aussillous
,
P.
, and
Guazzelli
,
E.
, 2009, “
Sediment Dynamics. Part 1. Bed-Load Transport by Laminar Shearing Flows
,”
J. Fluid Mech.
0022-1120,
636
, pp.
295
319
.
26.
Ouriemi
,
M.
,
Aussillous
,
P.
, and
Guazzelli
,
E.
, 2009, “
Sediment Dynamics. Part 2. Dune Formation in Pipe Flow
,”
J. Fluid Mech.
0022-1120,
636
, pp.
321
336
.
27.
Angelsen
,
S.
,
Kvernvold
,
O.
,
Lingelem
,
M.
, and
Olsen
,
S.
, 1989, “
Long-Distance Transport of Unprocessed HC sand Settling in Multiphase Flow Lines
,”
Proceedings of the Fourth international Conference on Multiphase Flow
, pp.
149
170
.
28.
Oudeman
,
P.
, 1993, “
Sand Transport and Deposition in Horizontal Multiphase Trunklines of Subsea Satellite Developments
,”
SPE Prod. Facil.
1064-668X,
8
(
4
), pp.
237
241
.
29.
Gillies
,
R. G.
,
McKibben
,
M. J.
, and
Shook
,
C. A.
, 1997, “
Pipeline Flow of Gas, Liquid and Sand Mixture at Low Velocities
,”
J. Can. Pet. Technol.
0021-9487,
36
(
9
), pp.
36
42
.
30.
Salama
,
M. M.
, 1998, “
Sand Production Management
,”
Proceedings of the Annual Offshore Technology Conference
, Vol.
4
, pp.
743
751
.
31.
Stevenson
,
P.
,
Thorpe
,
R. B.
,
Kennedy
,
J. E.
, and
McDermott
,
C.
, 2001, “
The Transport of Particles at Low Loading in Near-Horizontal Pipes by Intermittent Flow
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
2149
2159
.
32.
Stevenson
,
P.
, and
Thorpe
,
R. B.
, 2003, “
Energy Dissipation at the Slug Nose and the Modeling of Solids Transport in Intermittent Flow
,”
Can. J. Chem. Eng.
0008-4034,
81
(
2
), pp.
271
278
.
33.
Bello
,
O. O.
,
Reinicke
,
K. M.
, and
Teodoriu
,
C.
, 2005, “
Particle Holdup Profile in Horizontal Gas-Liquid-Solid Multiphase Flow Pipeline
,”
Chem. Eng. Technol.
0930-7516,
28
(
12
), pp.
1546
1553
.
34.
Danielson
,
T. J.
, 2007, “
Sand Transport Modeling in Multiphase Pipeline
,”
Proceedings of the Offshore Technology Conference
, OTC Paper No. 18691.
35.
Orell
,
A.
, 2007, “
The Effect of Gas Injection on the Hydraulic Transport of Slurries in Horizontal Pipes
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
6659
6676
.
36.
Goharzadeh
,
A.
, and
Rodgers
,
P.
, 2009, “
Experimental Characterization of Solid Particle Transport by Slug Flow Using Particle Image Velocimetry
,”
J. Phys.: Conf. Ser.
1742-6588,
147
, p.
012069
.
37.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.