The concept of slip length, related to surface velocity and shear rate, is often used to analyze the slip surface property for flow in micro- or nanochannels. In this study, a hybrid scheme that couples molecular dynamics simulation (used near the solid boundary to include the surface effect) and a continuum solution (to study the fluid mechanics) is validated and used for the study of slip length behavior in the Couette flow problem. By varying the height of the channel across multiple length scales, we investigate the effect of channel scale on surface slip length. In addition, by changing the velocity of the moving-solid wall, the influence of shear rate on the slip length is studied. The results show that within a certain range of the channel heights, the slip length is size dependent. This upper bound of the channel height can vary with the shear rate. Under different magnitudes of moving velocities and channel heights, a relative slip length can be introduced, which changes with channel height following a logarithmic function, with the coefficients of the function being the properties of the fluid and wall materials.

1.
Frenkel
,
D.
, and
Smit
,
B.
, 1996,
Understanding Molecular Simulations: From Algorithms to Applications
,
Academic
,
New York
.
2.
Koplik
,
J.
, and
Banavar
,
J. R.
, 1995, “
Continuum Deductions From Molecular Hydrodynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
27
(
1
), pp.
257
292
.
3.
Koumoutsakos
,
P.
, 2005, “
Multiscale Simulations Using Particles
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
(
1
), pp.
457
487
.
4.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
, 2005, “
Hybrid Atomistic-Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
0021-9991,
205
(
1
), pp.
373
390
.
5.
O’Connell
,
S. T.
, and
Thompson
,
P. A.
, 1995, “
Molecular Dynamics-Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,”
Phys. Rev. E
1063-651X,
52
(
6
), pp.
R5792
R5795
.
6.
Hadjiconstantinou
,
N. G.
, and
Patera
,
A. T.
, 1997, “
Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems
,”
Int. J. Mod. Phys. C
0129-1831,
8
, pp.
967
976
.
7.
Li
,
J.
,
Liao
,
D.
, and
Yip
,
S.
, 1998, “
Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator
,”
Phys. Rev. E
1063-651X,
57
(
6
), pp.
7259
7267
.
8.
Flekkøy
,
E. G.
,
Wagner
,
G.
, and
Feder
,
J.
, 2000, “
Hybrid Model for Combined Particle and Continuum Dynamics
,”
Europhys. Lett.
0295-5075,
52
(
3
), pp.
271
276
.
9.
Nie
,
X. B.
,
Chen
,
S. Y.
,
E
,
W. N.
, and
Robbins
,
M. O.
, 2004, “
A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow
,”
J. Fluid Mech.
0022-1120,
500
(
1
), pp.
55
64
.
10.
Ren
,
W.
and E, W., 2005, “
Heterogeneous Multiscale Method for the Modeling of Complex Fluids and Micro-Fluidics
,”
J. Comput. Phys.
0021-9991,
204
(
1
), pp.
1
26
.
11.
Cui
,
J.
,
He
,
G.
, and
Qi
,
D.
, 2006, “
A Constrained Particle Dynamics for Continuum-Particle Hybrid Method in Micro- and Nano-Fluidics
,”
Acta Mech. Sin.
0459-1879,
22
(
6
), pp.
503
508
.
12.
Wang
,
Y. C.
, and
He
,
G. W.
, 2007, “
A Dynamic Coupling Model for Hybrid Atomistic-Continuum Computations
,”
Chem. Eng. Sci.
0009-2509,
62
(
13
), pp.
3574
3579
.
13.
Thompson
,
P. A.
, and
Robbins
,
M. O.
, 1990, “
Shear-Flow Near Solids—Epitaxial Order and Flow Boundary-Conditions
,”
Phys. Rev. A
1050-2947,
41
(
12
), pp.
6830
6837
.
14.
Koplik
,
J.
,
Banavar
,
J. R.
, and
Willemsen
,
J. F.
, 1989, “
Molecular-Dynamics of Fluid-Flow at Solid-Surfaces
,”
Phys. Fluids A
0899-8213,
1
(
5
), pp.
781
794
.
15.
Cieplak
,
M.
,
Koplik
,
J.
, and
Banavar
,
J. R.
, 2001, “
Boundary Conditions at a Fluid-Solid Interface
,”
Phys. Rev. Lett.
0031-9007,
86
(
5
), pp.
803
806
.
16.
Lichter
,
S.
,
Roxin
,
A.
, and
Mandre
,
S.
, 2004, “
Mechanisms for Liquid Slip at Solid Surfaces
,”
Phys. Rev. Lett.
0031-9007,
93
(
8
), p.
086001
.
17.
Lichter
,
S.
,
Martini
,
A.
,
Snurr
,
R. Q.
, and
Wang
,
Q.
, 2007, “
Liquid Slip in Nanoscale Channels as a Rate Process
,”
Phys. Rev. Lett.
0031-9007,
98
(
22
), p.
226001
.
18.
Martini
,
A.
,
Roxin
,
A.
,
Snurr
,
R. Q.
,
Wang
,
Q.
, and
Lichter
,
S.
, 2008, “
Molecular Mechanisms of Liquid Slip
,”
J. Fluid Mech.
0022-1120,
600
, pp.
257
269
.
19.
Thompson
,
P. A.
, and
Troian
,
S. M.
, 1997, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature (London)
0028-0836,
389
, pp.
675
677
.
20.
Xu
,
J. L.
, and
Li
,
Y. X.
, 2007, “
Boundary Conditions at the Solid-Liquid Surface Over the Multiscale Channel Size From Nanometer to Micron
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
13–14
), pp.
2571
2581
.
21.
Yen
,
T.
,
Soong
,
C.
, and
Tzeng
,
P.
, 2007, “
Hybrid Molecular Dynamics-Continuum Simulation for Nano/Mesoscale Channel Flows
,”
Microfluid. Nanofluid.
1613-4982,
3
(
6
), pp.
665
675
.
22.
Martini
,
A.
,
Hsu
,
H.
,
Patankar
,
N. A.
, and
Lichter
,
S.
, 2008, “
Slip at High Shear Rates
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
206001
.
23.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1989,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
24.
Rapaport
,
D.
, 2004,
The Art of Molecular Dynamics Simulation
, 2nd ed.,
Cambridge University Press
,
Cambridge, London
.
25.
Andersen
,
H. C.
, 1980, “
Molecular Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
0021-9606,
72
, pp.
2384
2393
.
26.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
, 1984, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
0021-9606,
81
(
8
), pp.
3684
3690
.
27.
Delgado-Buscalioni
,
R.
, and
Coveney
,
P. V.
, 2003, “
Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow
,”
Phys. Rev. E
1063-651X,
67
(
4
), p.
046704
.
You do not currently have access to this content.