Large-eddy simulation of flow over an open cavity corresponding to the experimental setup of Liu and Katz (2008, “Cavitation Phenomena Occurring Due to Interaction of Shear Layer Vortices With the Trailing Corner of a Two-Dimensional Open Cavity,” Phys. Fluids, 20(4), p. 041702) is performed. The filtered, incompressible Navier–Stokes equations are solved using a co-located grid finite-volume solver with the dynamic Smagorinsky model for a subgrid-scale closure. The computational grid consists of around 7×106 grid points with 3×106 points clustered around the shear layer, and the boundary layer over the leading edge is resolved. The only input from the experimental data is the mean velocity profile at the inlet condition. The mean flow is superimposed with turbulent velocity fluctuations generated by solving a forced periodic duct flow at a freestream Reynolds number. The flow statistics, including mean and rms velocity fields and pressure coefficients, are compared with the experimental data to show reasonable agreement. The dynamic interactions between traveling vortices in the shear layer and the trailing edge affect the value and location of the pressure minima. Cavitation inception is investigated using two approaches: (i) a discrete bubble model wherein the bubble dynamics is computed by solving the Rayleigh–Plesset and the bubble motion equations using an adaptive time-stepping procedure and (ii) a scalar transport model for the liquid volume fraction with source and sink terms for phase change. Large-eddy simulation, together with the cavitation models, predicts that inception occurs near the trailing edge similar to that observed in the experiments. The bubble transport model captures the subgrid dynamics of the vapor better, whereas the scalar model captures the large-scale features more accurately. A hybrid approach combining the bubble model with the scalar transport is needed to capture the broad range of scales observed in cavitation.

1.
Arndt
,
R.
, 2002, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
(
1
), pp.
143
175
.
2.
Rood
,
E.
, 1991, “
Review: Mechanisms of Cavitation Inception
,”
ASME J. Fluids Eng.
0098-2202,
113
(
2
), pp.
163
175
.
3.
Liu
,
X.
, and
Katz
,
J.
, 2008, “
Cavitation Phenomena Occurring Due to Interaction of Shear Layer Vortices With the Trailing Corner of a Two-Dimensional Open Cavity
,”
Phys. Fluids
1070-6631,
20
(
4
), p.
041702
.
4.
Johnson
,
V.
, and
Hsieh
,
T.
, 1966, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
Sixth Symposium on Naval Hydrodynamics
, pp.
163
179
.
5.
Hsiao
,
C.
, and
Chahine
,
G.
, 2008, “
Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a Ducted Propulsor
,”
J. Ship Res.
0022-4502,
52
(
2
), pp.
114
123
.
6.
Hsiao
,
C.
,
Jain
,
A.
, and
Chahine
,
G.
, 2006, “
Effect of Gas Diffusion on Bubble Entrainment and Dynamics Around a Propeller
,”
Proceedings of the 24th Symposium on Naval Hydrodynamics
, Rome, Italy, Vol.
26
.
7.
De Chizelle
,
Y. K.
,
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1995, “
Observations and Scaling of Travelling Bubble Cavitation
,”
J. Fluid Mech.
0022-1120,
293
(
1
), pp.
99
126
.
8.
Cerutti
,
S.
,
Knio
,
O.
, and
Katz
,
J.
, 2000, “
Numerical Study of Cavitation Inception in the Near Field of an Axisymmetric Jet at High Reynolds Number
,”
Phys. Fluids
1070-6631,
12
, pp.
2444
2460
.
9.
Kim
,
J.
,
Paterson
,
E.
, and
Stern
,
F.
, 2006, “
RANS Simulation of Ducted Marine Propulsor Flow Including Subvisual Cavitation and Acoustic Modeling
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
799
810
.
10.
Farrell
,
K.
, 2003, “
Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,”
ASME J. Fluids Eng.
0098-2202,
125
(
1
), pp.
46
52
.
11.
Alehossein
,
H.
, and
Qin
,
Z.
, 2007, “
Numerical Analysis of Rayleigh–Plesset Equation for Cavitating Water Jets
,”
Int. J. Numer. Methods Eng.
0029-5981,
72
, pp.
780
807
.
12.
Wienken
,
W.
,
Stiller
,
J.
, and
Keller
,
A.
, 2006, “
A Method to Predict Cavitation Inception Using Large-Eddy Simulation and Its Application to the Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
316
325
.
13.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
14.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P.
, 1998, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation (CAV ‘98)
, Grenoble, France.
15.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
975
995
.
16.
Hsiao
,
C.
, and
Chahine
,
G.
, 2002, “
Prediction of Vortex Cavitation Inception Using Coupled Spherical and Non-Spherical Models and UnRANS Computations
,”
Proceedings of the 24th Symposium on Naval Hydrodynamics
, Fukuoka, Japan.
17.
Shams
,
E.
, 2010, “
Numerical Simulation of Cavitating Bubble-Laden Turbulent Flows
,” Ph.D. thesis, Oregon State University, Corvallis, OR.
18.
Brennen
,
C.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
19.
Chahine
,
G.
, 1994, “
Strong Interactions Bubble/Bubble and Bubble/Flow
,”
IUTAM Conference on Bubble Dynamics and Interfacial Phenomena
,
J. R.
Blake
, ed.,
Kluwer
,
Dordrecht
.
20.
Apte
,
S.
,
Mahesh
,
K.
, and
Lundgren
,
T.
, 2008, “
Accounting for Finite-Size Effects in Simulations of Disperse Particle-Laden Flows
,”
Int. J. Multiphase Flow
0301-9322,
34
, pp.
260
271
.
21.
Darmana
,
D.
,
Deen
,
N.
, and
Kuipers
,
J.
, 2006, “
Parallelization of an Euler–Lagrange Model Using Mixed Domain Decomposition and a Mirror Domain Technique: Application to Dispersed Gas–Liquid Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
220
(
1
), pp.
216
248
.
22.
Apte
,
S.
,
Shams
,
E.
, and
Finn
,
J.
, 2009, “
A Hybrid Lagrangian-Eulerian Approach for Simulation of Bubble Dynamics
,”
Proceedings of the Seventh International Symposium on Cavitation, CAV2009
, Ann Arbor, MI.
23.
Singhal
,
A.
,
Vaidya
,
N.
, and
Leonard
,
A.
, 1997, “
Multidimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change
,”
1997 ASME Fluids Engineering Division Summer Meeting
, ASME Paper No. FEDSM97-3272.
24.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-2: Time-Dependent Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
997
1016
.
25.
Senocak
,
I.
, and
Shyy
,
W.
, 2002, “
Evaluation of Cavitation Models for Navier-Stokes Computations
,”
Proceedings of the 2002 ASME Fluids Engineering Division Summer Meeting
, Montreal, CA, Paper No. FEDSM2002-31011.
26.
Mahesh
,
K.
,
Constantinescu
,
G.
, and
Moin
,
P.
, 2004, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
0021-9991,
197
(
1
), pp.
215
240
.
27.
Mahesh
,
K.
,
Constantinescu
,
G.
,
Apte
,
S.
,
Iaccarino
,
G.
,
Ham
,
F.
, and
Moin
,
P.
, 2006, “
Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
374
381
.
28.
Moin
,
P.
, and
Apte
,
S.
, 2006, “
Large-Eddy Simulation of Realistic Gas Turbine-Combustors
,”
AIAA J.
0001-1452,
44
(
4
), pp.
698
708
.
29.
Apte
,
S.
,
Mahesh
,
K.
,
Moin
,
P.
, and
Oefelein
,
J.
, 2003, “
Large-Eddy Simulation of Swirling Particle-Laden Flows in a Coaxial-Jet Combustor
,”
Int. J. Multiphase Flow
0301-9322,
29
(
8
), pp.
1311
1331
.
30.
Pierce
,
C.
, and
Moin
,
P.
, 1998, “
Large Eddy Simulation of a Confined Coaxial Jet With Swirl and Heat Release
,” AIAA Paper No. 2892.
31.
Liu
,
X.
, and
Katz
,
J.
, 2006, “
Instantaneous Pressure and Material Acceleration Measurements Using a Four-Exposure PIV System
,”
Exp. Fluids
0723-4864,
41
(
2
), pp.
227
240
.
32.
Martin
,
W.
,
Naudascher
,
E.
, and
Padmanabhan
,
M.
, 1975, “
Fluid-Dynamic Excitation Involving Flow Instability
,”
J. Hydr. Div.
0044-796X,
101
, pp.
681
697
.
33.
Blake
,
W.
, 1986,
Mechanics of Flow-Induced Sound and Vibration
,
Academic
,
New York
.
You do not currently have access to this content.