Low Reynolds number steady and unsteady incompressible flows over two circular cylinders in tandem are numerically simulated for a range of Reynolds numbers with varying gap size. The governing equations are solved on an unstructured collocated mesh using a second-order implicit finite volume method. The effects of the gap and Reynolds number on the vortex structure of the wake and on the fluid dynamic forces acting on the cylinders are reported and discussed. Both the parameters have significant influence on the flow field. An attempt is made to unify their influence on some global parameters.
1.
Oka
, S.
, Kostic
, Z. G.
, and Sikmanovic
, S.
, 1972, “Investigation of the Heat Transfer Processes in Tube Banks in Cross Flow
,” International Seminar on Recent Developments in Heat Exchangers
, Trogir, Yugoslavia.2.
Jendrzejczyk
J. A.
, and Chen
, S. S.
, 1986, “Fluid Forces on Two Circular Cylinders in Cross Flow
,” PVP (Am. Soc. Mech. Eng.)
0277-027X, 104
, pp. 1
–13
.3.
Zdravkovich
M. M.
, 1977, “Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,” ASME J. Fluids Eng.
0098-2202, 99
(4), pp. 618
–633
.4.
Zdravkovich
, M. M.
, 1987, “The Effects of Interference Between Circular Cylinders in a Cross Flow
,” J. Fluids Structures
, 1
, pp. 239
–261
.5.
Kiya
, M.
, Mochizuki
, O.
, Ido
, Y.
, Suzuki
, T.
, and Arai
, T.
, 1993, “Flip-Flopping Flow Around Two Bluff Bodies in Tandem Arrangement
,” Bluff-body Wakes, Dynamics and Instabilities
, IUTAM Symposium 1992
, Springer-Verlag
, Berlin
, pp. 15
–18
.6.
Chen
, S. S.
, 1987, Flow Induced Vibrations of Circular Cylindrical Structures
, Hemisphere
, New York
.7.
Li
, J.
, Chambarel
, A.
, Donneaud
, M.
, and Martin
, R.
, 1991, “Numerical Study of Laminar Flow Past One and Two Cylinders
,” Comput. Fluids
0045-7930, 19
(2
), pp. 155
–170
.8.
Johnson
, A. A.
, Tezduyar
, T. E.
, and Liou
, J.
, 1993, “Numerical Simulation of Flows Past Periodic Arrays of Cylinders
,” Comput. Mech.
0178-7675, 11
, pp. 371
–383
.9.
Mittal
, S.
, Kumar
, V.
, and Raghuvashi
, A.
, 1997, “Unsteady Incompressible Flows Past Two Cylinders in Tandem and Staggered Arrangement
,” Int. J. Numer. Methods Fluids
0271-2091, 25
, pp. 1315
–1344
.10.
Farrant
, T.
, Tan
, M.
, and Price
, W. G.
, 2001, “A Cell Boundary Element Method Applied to Laminar Vortex Shedding From Circular Cylinders
,” Comput. Fluids
0045-7930, 30
, pp. 211
–236
.11.
Hall
, J. W.
, Ziada
, S.
, and Weaver
, D. S.
, 2003, “Vortex Shedding From Single and Tandem Cylinders in the Presence of Applied Sound
,” J. Fluids Struct.
0889-9746, 18
, pp. 741
–758
.12.
Meneghini
, J. R.
, Saltara
, F.
, Siqueira
, C. L. R.
, and Ferrari
, J. A.
, Jr., 2001, “Numerical Simulation of Flow Interference Between Two Circular Cylinders in Tandem and Side-by-Side Arrangements
,” J. Fluids Struct.
0889-9746, 15
, pp. 327
–350
.13.
Sharman
, B.
, Lien
, F. S.
, Davidson
, L.
, and Norberg
, C.
, 2005, “Numerical Predictions of Low Reynolds Number Flows Over Two Tandem Circular Cylinders
,” Int. J. Numer. Methods Fluids
0271-2091, 47
, pp. 423
–447
.14.
Ding
, H.
, Shu
, C.
, Yeo
, K. S.
, and Xu
, D.
, 2007, “Numerical Simulation of Flows Around Two Circular Cylinders by Mesh-Free Least Square Based Finite Difference Methods
,” Int. J. Numer. Methods Fluids
0271-2091, 53
, pp. 305
–332
.15.
Rhie
, C. M.
, and Chow
, W. L.
, 1983, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,” AIAA J.
0001-1452, 21
, pp. 1525
–1532
.16.
Leonard
, B. P.
, 1979, “A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 19
, pp. 59
–98
.17.
Holmes
D. G.
, and Connel
S. D.
, 1989, “Solution of 2D Navier-Stokes Equations on Unstructured Adaptive Grids
,” AIAA Paper No. 89-1932-CP.18.
Kang
, S.
, 2003, “Characteristics of Flow Over Two Circular Cylinders in a Side-by-Side Arrangement at Low Reynolds Numbers
,” Phys. Fluids
1070-6631, 15
, pp. 2486
–2498
.19.
Zhou
, C. Y.
, So
, R. M. C.
, and Lam
, K.
, 1999, “Vortex-Induced Vibration of an Elastic Circular Cylinder
,” J. Fluids Struct.
0889-9746, 13
, pp. 165
–189
.20.
Liu
, C.
, Zheng
, X.
, and Sung
, C. H.
, 1998, “Preconditioned Multigrid Methods for Unsteady Incompressible Flows
,” J. Comput. Phys.
0021-9991, 139
, pp. 35
–49
.21.
Zdravkovich
, M. M.
, 1997, Flow Around Circular Cylinders, Volume 1: Fundamentals
, Oxford University Press
, New York
.22.
Newman
, D. J.
, and Karniadakis
, G. E.
, 1997, “A Direct Numerical Simulation Study of Flow Past a Freely Vibrating Cable
,” J. Fluid Mech.
0022-1120, 344
, pp. 95
–136
.23.
Saffman
, P. G.
, and Schatzman
, J. C.
, 1982, “Stability of a Vortex Street of Finite Vortices
,” J. Fluid Mech.
0022-1120, 117
, pp. 171
–185
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.