In this paper, two categories of reduced-order modeling (ROM) of the shallow water equations (SWEs) based on the proper orthogonal decomposition (POD) are presented. First, the traditional Galerkin-projection POD/ROM is applied to the one-dimensional (1D) SWEs. The result indicates that although the Galerkin-projection POD/ROM is suitable for describing the physical properties of flows (during the POD basis functions’ construction time), it cannot predict that the dynamics of the shallow water flows properly as it was expected, especially with complex initial conditions. Then, the study is extended to applying the equation-free/Galerkin-free POD/ROM to both 1D and 2D SWEs. In the equation-free/Galerkin-free framework, the numerical simulation switches between a fine-scale model, which provides data for construction of the POD basis functions, and a coarse-scale model, which is designed for the coarse-grained computational study of complex, multiscale problems like SWEs. In the present work, the Beam & Warming and semi-implicit time integration schemes are applied to the 1D and 2D SWEs, respectively, as fine-scale models and the coefficients of a few POD basis functions (reduced-order model) are considered as a coarse-scale model. Projective integration is applied to the coarse-scale model in an equation-free framework with a time step grater than the one used for a fine-scale model. It is demonstrated that equation-free/Galerkin-free POD/ROM can resolve the dynamics of the complex shallow water flows. Moreover, the computational cost of the approach is less than the one for a fine-scale model.

1.
Lucia
,
D.
,
Beran
,
P.
, and
Silva
,
W.
, 2004, “
Reduced-Order Modeling: New Approaches for Computational Physics
,”
Prog. Aerosp. Sci.
0376-0421,
40
(
1–2
), pp.
51
117
.
2.
Karhunen
,
K.
, 1946, “
Zur spektral theorie stochasticher prozesse
,”
Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
0365-2300,
34
, pp.
1
7
.
3.
Loeve
,
M.
, 1946, “
Sur le fonctions alatoire de second ordre
,”
Rev. Sci.
0370-4556,
84
, pp.
195
206
.
4.
Lumley
,
J.
, 1967, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglow
and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
5.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures: Parts I—III
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
561
590
.
6.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
, 1998,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge
.
7.
Ravindran
,
S.
, 2000, “
A Reduced-Order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition
,”
Int. J. Numer. Methods Fluids
0271-2091,
34
(
5
), pp.
425
448
.
8.
Couplet
,
M.
,
Basdevant
,
C.
, and
Sagaut
,
P.
, 2005, “
Calibrated Reduced-Order POD Galerkin System for Fluid Flow Modeling
,”
J. Comput. Phys.
0021-9991,
207
(
1
), pp.
192
220
.
9.
Rowley
,
C.
,
Colonius
,
T.
, and
Murray
,
R.
, 2004, “
Model Reduction for Compressible Flows Using POD and Galerkin Projection
,”
Physica D
0167-2789,
189
(
1–2
), pp.
115
129
.
10.
Achatz
,
U.
, and
Opsteegh
,
J.
, 2003, “
Primitive-Equation-Based Low-Order Models With Seasonal Cycle. Part i: Model Construction
,”
J. Atmos. Sci.
0022-4928,
60
(
3
), pp.
465
477
.
11.
Achatz
,
U.
, and
Opsteegh
,
J.
, 2003, “
Primitive-Equation-Based Low-Order Models With Seasonal Cycle. Part ii: Application to Complexity and Nonlinearity of Large-Scale Atmosphere
,”
J. Atmos. Sci.
0022-4928,
60
(
3
), pp.
478
490
.
12.
Majda
,
A.
,
Timofeyev
,
I.
, and
Vanden-Eijnden
,
E.
, 2003, “
Systematic Strategies for Stochastic Mode Reduction in Climate
,”
J. Atmos. Sci.
0022-4928,
60
(
14
), pp.
1705
1722
.
13.
Sirisup
,
S.
,
Karniadakis
,
G.
,
Xiu
,
D.
, and
Kevrekidis
,
I.
, 2005, “
Equation-Free/Galerkin-Free POD-Assisted Computation of Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
207
(
2
), pp.
568
587
.
14.
Theodoropoulos
,
C.
,
Qian
,
Y.
, and
Kevrekidis
,
I.
, 2000, “
Coarse Stability and Bifurcation Analysis Using Time-Steppers: A Reaction-Diffusion Example
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
18
), pp.
9840
9843
.
15.
Kevrekidis
,
I.
,
Gear
,
C.
,
Hyman
,
J.
,
Kevrekidis
,
P.
,
Runborg
,
O.
, and
Theodoropoulos
,
C.
, 2003, “
Equation-Free Coarse-Grained Multiscale Computation: Enabling Microscopic Simulators to Perform System-Level Analysis
,”
Commun. Math. Sci.
1539-6746,
1
(
4
), pp.
715
762
.
16.
Kevrekidis
,
I.
,
Gear
,
C.
, and
Hummer
,
G.
, 2004, “
Equation-Free: The Computer Assisted Analysis of Complex, Multiscale System
,”
AIChE J.
0001-1541,
50
(
7
), pp.
1346
1354
.
17.
Gear
,
C.
, and
Kevrekidis
,
I.
, 2003, “
Projective Methods for Stiff Differential Equations: Problems With Gaps in Their Eigenvalues Spectrum
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
4
), pp.
1091
1106
.
18.
Gear
,
C.
, and
Kevrekidis
,
I.
, 2003, “
Telescopic Projective Methods for Parabolic Differential Equations
,”
J. Comput. Phys.
0021-9991,
187
(
1
), pp.
95
109
.
19.
Rico-Martinez
,
R.
,
Gear
,
C.
, and
Kevrekidis
,
I.
, 2004, “
Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems
,”
J. Comput. Phys.
0021-9991,
196
(
2
), pp.
474
489
.
20.
Gear
,
C.
,
Li
,
J.
, and
Kevrekidis
,
I.
, 2003, “
The Gap-Tooth Method in Particle Simulations
,”
Phys. Lett. A
0375-9601,
316
(
3–4
), pp.
190
195
.
21.
Li
,
J.
,
Kevrekidis
,
P.
,
Gear
,
C.
, and
Kevrekidis
,
P.
, 2003, “
Deciding the Nature of the Coarse Integration Through Microscopic Simulations: The Baby-Bathwater Scheme
,”
SIAM J. Multiscale Model. Simulation
,
1
(
3
), pp.
391
407
.
22.
Makeev
,
A.
,
Maroudas
,
D.
, and
Kevrekidis
,
I.
, 2002, “
Coarse Stability and Bifurcation Analysis Using Stochastic Simulators: Kinetic Monte Carlo Examples
,”
J. Chem. Phys.
0021-9606,
116
(
23
), pp.
10083
10091
.
23.
Makeev
,
A.
,
Maroudas
,
D.
,
Panagiotopoulos
,
A.
, and
Kevrekidis
,
I.
, 2002, “
Coarse Bifurcation Analysis of Kinetic Monte Carlo Simulations: A Lattice-Gas Model With Lateral Interactions
,”
J. Chem. Phys.
0021-9606,
117
(
18
), pp.
8229
8240
.
24.
Abbott
,
M.
, and
Basco
,
D.
, 1989,
Computational Fluid Dynamics: An Introduction for Engineers
,
Wiley
,
Harlow, England
.
25.
Beam
,
R.
, and
Warming
,
R.
, 1978, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
16
(
4
), pp.
393
402
.
26.
Duran
,
D.
, 1999,
Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
,
Springer
,
New York
.
27.
Heikes
,
R.
, and
Randall
,
D.
, 1995, “
Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part i: Basic Design and Results of Tests
,”
Mon. Weather Rev.
0027-0644,
123
(
6
), pp.
1862
1880
.
28.
Dritschel
,
D.
,
Polvani
,
L.
, and
Mohebalhojeh
,
A.
, 1999, “
The Contour-Advective Semilagrangian Algorithm for the Shallow Water Equations
,”
Mon. Weather Rev.
0027-0644,
127
(
7
), pp.
1551
1565
.
29.
Foias
,
C.
,
Jolly
,
M.
,
Kevrekidis
,
I.
, and
Titi
,
E.
, 1991, “
Dissipativity of the Numerical Schemes
,”
Nonlinearity
0951-7715,
4
, pp.
591
613
.
30.
Sirisup
,
S.
, and
Karniadakis
,
G.
, 2004, “
A Spectral Viscosity Method for Correcting the Long-Term Behavior of POD Models
,”
J. Comput. Phys.
0021-9991,
194
(
1
), pp.
92
116
.
31.
Frank
,
J.
,
Gottwald
,
G.
, and
Reich
,
S.
, 2002, “
A Hamiltonian Particle-Mesh Method for the Rotating Shallow-Water Equations
,”
Lecture Notes in Computational Science and Engineering
, Vol.
26
,
Springer
,
Berlin
, pp.
131
142
.
You do not currently have access to this content.