As a numerical method to study the cavitation performance of a Francis turbine, the mixture model for the cavity/liquid two-phase flow is adopted in the cavitating turbulent flow analysis together with the re-normalization group (RNG) k-ε turbulence model in the present paper. The direct coupling numerical technique is used to solve the governing equations of the mixture model for the two-phase flow. Unsteady cavitating flow simulation around a hydrofoil of ALE15 is conducted as preliminary evaluation. Then, the cavitating flow in a Francis turbine is treated from the steady flow simulation since the feasibility of the cavitation model to the performance prediction of the turbine is the present major concern. Comparisons of the computational results with the model test data, i.e., the cavitation characteristics of hydraulic efficiency and the overload vortex rope at the draft tube inlet being reproduced reasonably, indicate that the present method has sufficient potential to simulate the cavitating flow in hydraulic turbines. Further, the unsteady cavitating flow simulation through the Francis turbine is conducted as well to study the pressure fluctuation characters caused by the vortex rope in the draft tube at partial load operation.

1.
Susan-Resiga
,
R. F.
,
Muntean
,
S.
, and
Anton
,
I.
, 2002, “
Numerical Analysis of Cavitation Inception in Francis Turbine
,”
Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems
,
F.
Avellan
,
G.
Ciocan
, and
S.
Kvicinsky
, eds., Lausanne, Switzerland, pp.
431
438
.
2.
Yamaguchi
,
H.
, and
Kato
,
H.
, 1983, “
On Application of Nonlinear Cavity Flow Theory to Thick Foil Section
,”
Proceedings of the Second International Conference of Cavitation
, ImechE, Paper No. C209/83, pp.
167
174
.
3.
Brewer
,
W. H.
, and
Kinnas
,
S. A.
, 1995, “
Experimental and Computational Investigation of Sheet Cavitation on a Hydrofoil
,”
Proceedings of the Second Joint ASME/JSME Fluids Engineering Conference and ASME/EALA Sixth International Conference on Laser Anemometry
, Hilton Head Island, SC, pp.
1
15
.
4.
Pellone
,
C.
, and
Peallat
,
J. M.
, 1995, “
Non-Linear Analysis of Three-Dimensional Partially Cavitating Hydrofoil
,”
Proceedings of the International Symposium on Cavitation
, Deauville, France, pp.
63
67
.
5.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
, 1998, “
Sheet Cavitation and Cloud Cavitation Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1–4
), pp.
91
114
. 0003-6994
6.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
, 2007, “
Steady Analysis of the Thermodynamic Effect of Partial Cavitation Using the Singularity Method
,”
ASME J. Fluids Eng.
0098-2202,
129
(
2
), pp.
121
127
.
7.
Chen
,
Y.
, and
Heister
,
S. D.
, 1994, “
A Numerical Treatment for Attached Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
613
618
.
8.
Ventikos
,
Y.
, and
Tzabiras
,
G.
, 2000, “
A Numerical Method for the Simulation of Steady and Unsteady Cavitating Flows
,”
Comput. Fluids
0045-7930,
29
, pp.
63
88
.
9.
Horiguchi
,
H.
,
Arai
,
S.
,
Fukutomi
,
J.
,
Nakase
,
Y.
, and
Tsujimoto
,
Y.
, 2004, “
Quasi-Three-Dimensional Analysis of Cavitation in an Inducer
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
709
715
.
10.
Arndt
,
R. E. A.
,
Kjeldsen
,
M.
,
Song
,
C. C. S.
, and
Keller
,
A.
, 2002, “
Analysis of Cavitation Wake Flows
,”
Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems
,
F.
Avellan
,
G.
Ciocan
, and
S.
Kvicinsky
, eds., Lausanne, Switzerland, pp.
395
402
.
11.
Qin
,
Q.
,
Song
,
C. S. S.
, and
Arndt
,
R. E. A.
, 2003, “
Numerical Study of Unsteady Turbulent Wake Behind a Cavitating Hydrofoi
l,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Paper No. EM 003.
12.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
, 1997, “
Numerical Modeling of the Thermodynamic Effects of Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
420
427
.
13.
Rieger
,
R.
, 1992, “
Mehrdimensionale Berechnung Zweiphasiger Stroemungen
,” Ph.D. thesis, Technical University Graz, Graz, Austria.
14.
Grogger
,
H. A.
, and
Alajbegovic
,
A.
, 1998, “
Calculation of the Cavitating Flow in Venturi Geometries Using Two Fluid Model
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
, Washington, DC, Paper No. FEDSM98-5295.
15.
Liu
,
S. H.
,
Wu
,
Y. L.
, and
Luo
,
X. W.
, 2005, “
Numerical Simulation of 3D Cavitating Turbulent Flow in Francis Turbine
,”
Proceedings of the ASME FEDSM
, Houston, TX, Paper No. FEDSM2005-77017.
16.
Singhal
,
A. K.
,
Vaidya
,
N.
, and
Leonard
,
A. D.
, 1997, “
Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
, Vancouver, BC, Vol.
4
, pp.
1
8
.
17.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
, pp.
849
875
.
18.
Senocak
,
I.
, and
Shyy
,
W.
, 2002, “
A Pressure-Based Method for Turbulent Cavitating Flow Computation
,”
J. Comput. Phys.
0021-9991,
176
, pp.
363
383
.
19.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
(
3
), pp.
617
624
.
20.
Aschenbrenner
,
T.
,
Otto
,
A.
, and
Moser
,
W.
, 2006, “
Classification of Vortex and Cavitation Phenomena and Assessment of CFD Prediction Capabilities
,”
Proceedings. of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
J.
Kurokawa
, ed., Yokohama, Japan, Paper No. F132.
21.
Saito
,
Y.
,
Takami
,
R.
,
Nakamori
,
I.
, and
Ikohagi
,
T.
, 2007, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil
,”
Comput. Mech.
,
40
, pp.
85
96
. 0178-7675
22.
Okita
,
K.
, and
Kajishima
,
T.
, 2002, “
Numerical Simulation of Unsteady Cavitating Flow Around a Hydrofoil
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
68
, pp.
637
644
. 0098-2202
23.
Guo
,
Y.
,
Kato
,
C.
, and
Miyagawa
,
K.
, 2006, “
Large-Eddy Simulation of Non-Cavitating and Cavitating Flow in Venturi Geometries Using Two Fluid Model
,”
Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems
,
J.
Kurokawa
, ed., Yokohama, Japan, Paper No. F195.
24.
Lindau
,
J. W.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
, and
Gibeling
,
H. J.
, 2002, “
High Reynolds Number, Unsteady, Multiphase CFD Modeling of Cavitating Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
(
3
), pp.
607
616
.
25.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
, and
Yocum
,
A. M.
, 2002, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
0098-2202,
124
(
2
), pp.
377
383
.
26.
Fortes-Patella
,
R.
,
Coutier-Delgosha
,
O.
,
Perrin
,
J.
, and
Reboud
,
J. L.
, 2007, “
Numerical Model to Predict Unsteady Cavitating Flow Behavior in Inducer Blade Cascades
,”
ASME J. Fluids Eng.
0098-2202,
129
(
2
), pp.
128
135
.
27.
Xing
,
T.
,
Li
,
Z. Y.
, and
Frankel
,
S. H.
, 2005, “
Numerical Simulation of Vortex Cavitation in a Three-Dimensional Submerged Transitional Jet
,”
ASME J. Fluids Eng.
0098-2202,
127
(
4
), pp.
714
725
.
28.
Lu
,
T. S.
,
Samulyak
,
R.
, and
Glimm
,
J.
, 2007, “
Direct Numerical Simulation of Bubbly Flows and Application to Cavitation Mitigation
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
595
604
.
29.
Liu
,
S. H.
,
Li
,
S. C.
,
Zhang
,
L.
, and
Wu
,
Y. L.
, 2008, “
A Mixture Model With Modified Mass Transfer Expression for Cavitating Turbulent Flow Simulation
,”
Eng. Comput.
0264-4401,
25
, pp.
290
304
.
30.
Cammenga
,
H. K.
, 1980, “
Evaporation Mechanisms of Liquids
,”
Curr. Top. Mater. Sci.
0165-1854,
5
, pp.
335
446
.
31.
Vanka
,
S. P.
, 1986, “
Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
0021-9991,
65
(
1
), pp.
138
158
.
32.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
, 2003, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
125
(
1
), pp.
38
45
.
33.
Speziale
,
C. G.
, and
Thangam
,
S.
, 1992, “
Analysis of an RNG Based Turbulence Model for Separated Flows
,”
Int. J. Eng. Sci.
0020-7225,
30
(
10
), pp.
1379
1388
.
34.
Lam
,
S. H.
, 1992, “
On the RNG Theory of Turbulence
,”
Phys. Fluids
,
4
, pp.
1007
1017
. 1070-6631
35.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
, 2005, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B/Fluids
0997-7546,
24
, pp.
522
538
.
You do not currently have access to this content.