Pneumatic actuators can be advantageous over electromagnetic and hydraulic actuators in many servo motion applications. The difficulty in their practical use comes from the highly nonlinear dynamics of the actuator and control valve. Previous works have used the cylinder’s position, velocity, and internal pressure as state variables in system models. This paper replaces pressure in the state model with the mass of gas in each chamber of the cylinder, giving a better representation of the system dynamics. Under certain circumstances, the total mass of gas in the cylinder may be assumed to be constant. This allows development of a reduced-order system model.

1.
Bobrow
,
J. E.
, and
Jabbari
,
F.
, 1991, “
Adaptive Pneumatic Force Actuation and Position Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
267
272
.
2.
Richardson
,
R.
,
Plummer
,
A. R.
, and
Brown
,
M. D.
, 2001, “
Self-Tuning Control of a Low-Friction Pneumatic Actuator Under the Influence of Gravity
,”
IEEE Trans. Control Syst. Technol.
,
9
(
2
), pp.
330
334
. 1063-6536
3.
Moore
,
P. R.
, and
Pu
,
J. S.
, 1996, “
Pneumatic Servo Actuator Technology
,”
IEE Colloq. on Actuator Technology: Current Practice and New Developments
110
, pp.
3/1
3/6
.
4.
Shih
,
M.
, and
Ma
,
M. -A.
, 1998, “
Position Control of a Pneumatic Cylinder Using Fuzzy PWM Control Method
,”
Mechatronics
0957-4158,
8
, pp.
241
253
.
5.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II-Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
426
434
.
6.
McDonell
,
B. W.
, and
Bobrow
,
J. E.
, 1993, “
Adaptive Tracking Control of an Air Powered Robot Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
427
433
.
7.
Gross
,
D. C.
, and
Rattan
,
K. S.
, 1998, “
An Adaptive Multilayer Neural Network for Trajectory Control of a Pneumatic Cylinder
,”
IEEE International Conference on Systems, Man, and Cybernetics
, San Diego, CA, Vol.
2
, pp.
1662
1667
.
8.
Barth
,
E. J.
,
Zhang
,
J.
, and
Goldfarb
,
M.
, 2003, “
Control Design for Relative Staility in a PWM-Controlled Pneumatic System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
3
), pp.
504
508
.
9.
Shih
,
M. -C.
, and
Ma
,
M. -A.
, 1998, “
Position Control of a Pneumatic Cylinder Using PWM Control Method
,”
Mechatronics
0957-4158,
8
, pp.
241
253
.
10.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air–I
,”
Trans. ASME
0097-6822,
78
, pp.
233
242
.
11.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air–II
,”
Trans. ASME
0097-6822,
78
, pp.
243
249
.
12.
Liu
,
S.
, and
Bobrow
,
J. E.
, 1988, “
An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
228
235
. 0022-0434
13.
Kunt
,
C.
, and
Singh
,
R.
, 1990, “
A Linear Time Varying Model for On-Off Valve Controlled Pneumatic Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
740
747
.
14.
Hamiti
,
K.
,
Voda-Besançon
,
A.
, and
Roux-Boisson
,
H.
, 1996, “
Position Control of a Pneumatic Cylinder Under the Influence of Stiction
,”
Control Eng. Pract.
0967-0661,
4
(
8
), pp.
1079
1088
.
15.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
416
425
.
16.
Kawakami
,
Y.
,
Akao
,
J.
,
Kawai
,
S.
, and
Machiyama
,
T.
, 1988, “
Some Considerations on the Dynamic Characteristics of Pneumatic Cylinders
,”
J. Fluid Control
8755-8564,
19
(
2
), pp.
22
36
.
17.
Bigras
,
P.
, 2005, “
Sliding-Mode Observer as a Time-Variant Estimator for Control of Pneumatic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
499
502
.
18.
Caldwell
,
D. G.
,
Badihi
,
T. D.
, and
Medrano-Cerda
,
G. A.
, 1998, “
Pneumatic Muscle Actuator Technology a Light Weight Power System for a Humanoid Robot
,”
IEEE International Conference on Robotics and Automation
,” Leuven, Belgium, Vol.
4
, pp.
3053
3058
.
19.
McDonell
,
B. W.
, and
Bobrow
,
J. E.
, 1998, “
Modeling, Identification, and Control of a Pneumatically Actuated Robot
,”
IEEE Trans. Rob. Autom.
,
14
(
5
), pp.
124
129
. 1042-296X
20.
Harrison
,
R.
,
Weston
,
R. H.
,
Moore
,
P. R.
, and
Thatcher
,
T. W.
, 1987, “
A Study of Application Areas for Modular Robots
,”
Robotica
,
5
, pp.
217
221
. 0263-5747
21.
Thomas
,
M. B.
, 2003, “
Advanced Servo Control of a Pneumatic Actuator
,” Ph.D. thesis, Ohio State University, Columbus, OH.
22.
Pu
,
J. S.
, and
Weston
,
R. H.
, 1990, “
Steady State Analysis of Pneumatic Servo Drives
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
204
, pp.
377
387
.
23.
Backé
,
W.
, and
Ohligschläger
,
O.
, 1989, “
A Model of Heat Transfer in Pneumatic Chambers
,”
J. Fluid Control
8755-8564,
20
, pp.
61
78
.
24.
Andersen
,
B. W.
, 1976,
The Analysis and Design of Pneumatic Systems
,
Robert E. Kreiger
,
New York
.
25.
Hong
,
I. T.
, and
Tessmann
,
R. K.
, 1996, “
The Dynamic Analysis of Pneumatic Systems Using HyPneu
,”
International Fluid Power Exposition and Technical Conference
, Chicago, IL.
26.
Thomas
,
J. H.
, 2000, “
Proper Valve Size Helps Determine Flow
,” Control Engineering Online, http://www.manufacturing.net/ctl/article/CA188679http://www.manufacturing.net/ctl/article/CA188679
27.
Bobrow
,
J. E.
, and
Jabbari
,
F.
, 1991, “
Adaptive Pneumatic Force Actuation and Position Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
267
272
.
28.
Gao
,
Z.
, 2006, “
Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control Design
,”
Proceedings of the American Control Conference
, Minneapolis, MN, pp.
2399
2405
.
You do not currently have access to this content.