Pneumatic actuators can be advantageous over electromagnetic and hydraulic actuators in many servo motion applications. The difficulty in their practical use comes from the highly nonlinear dynamics of the actuator and control valve. Previous works have used the cylinder’s position, velocity, and internal pressure as state variables in system models. This paper replaces pressure in the state model with the mass of gas in each chamber of the cylinder, giving a better representation of the system dynamics. Under certain circumstances, the total mass of gas in the cylinder may be assumed to be constant. This allows development of a reduced-order system model.
Issue Section:
Flows in Complex Systems
1.
Bobrow
, J. E.
, and Jabbari
, F.
, 1991, “Adaptive Pneumatic Force Actuation and Position Control
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 113
, pp. 267
–272
.2.
Richardson
, R.
, Plummer
, A. R.
, and Brown
, M. D.
, 2001, “Self-Tuning Control of a Low-Friction Pneumatic Actuator Under the Influence of Gravity
,” IEEE Trans. Control Syst. Technol.
, 9
(2
), pp. 330
–334
. 1063-65363.
Moore
, P. R.
, and Pu
, J. S.
, 1996, “Pneumatic Servo Actuator Technology
,” IEE Colloq. on Actuator Technology: Current Practice and New Developments
110
, pp. 3/1
–3/6
.4.
Shih
, M.
, and Ma
, M. -A.
, 1998, “Position Control of a Pneumatic Cylinder Using Fuzzy PWM Control Method
,” Mechatronics
0957-4158, 8
, pp. 241
–253
.5.
Richer
, E.
, and Hurmuzlu
, Y.
, 2000, “A High Performance Pneumatic Force Actuator System: Part II-Nonlinear Controller Design
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 122
, pp. 426
–434
.6.
McDonell
, B. W.
, and Bobrow
, J. E.
, 1993, “Adaptive Tracking Control of an Air Powered Robot Actuator
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 115
, pp. 427
–433
.7.
Gross
, D. C.
, and Rattan
, K. S.
, 1998, “An Adaptive Multilayer Neural Network for Trajectory Control of a Pneumatic Cylinder
,” IEEE International Conference on Systems, Man, and Cybernetics
, San Diego, CA, Vol. 2
, pp. 1662
–1667
.8.
Barth
, E. J.
, Zhang
, J.
, and Goldfarb
, M.
, 2003, “Control Design for Relative Staility in a PWM-Controlled Pneumatic System
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 125
(3
), pp. 504
–508
.9.
Shih
, M. -C.
, and Ma
, M. -A.
, 1998, “Position Control of a Pneumatic Cylinder Using PWM Control Method
,” Mechatronics
0957-4158, 8
, pp. 241
–253
.10.
Shearer
, J. L.
, 1956, “Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air–I
,” Trans. ASME
0097-6822, 78
, pp. 233
–242
.11.
Shearer
, J. L.
, 1956, “Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air–II
,” Trans. ASME
0097-6822, 78
, pp. 243
–249
.12.
Liu
, S.
, and Bobrow
, J. E.
, 1988, “An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,” ASME J. Dyn. Syst., Meas., Control
, 110
, pp. 228
–235
. 0022-043413.
Kunt
, C.
, and Singh
, R.
, 1990, “A Linear Time Varying Model for On-Off Valve Controlled Pneumatic Actuators
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 112
, pp. 740
–747
.14.
Hamiti
, K.
, Voda-Besançon
, A.
, and Roux-Boisson
, H.
, 1996, “Position Control of a Pneumatic Cylinder Under the Influence of Stiction
,” Control Eng. Pract.
0967-0661, 4
(8
), pp. 1079
–1088
.15.
Richer
, E.
, and Hurmuzlu
, Y.
, 2000, “A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 122
, pp. 416
–425
.16.
Kawakami
, Y.
, Akao
, J.
, Kawai
, S.
, and Machiyama
, T.
, 1988, “Some Considerations on the Dynamic Characteristics of Pneumatic Cylinders
,” J. Fluid Control
8755-8564, 19
(2
), pp. 22
–36
.17.
Bigras
, P.
, 2005, “Sliding-Mode Observer as a Time-Variant Estimator for Control of Pneumatic Systems
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 127
, pp. 499
–502
.18.
Caldwell
, D. G.
, Badihi
, T. D.
, and Medrano-Cerda
, G. A.
, 1998, “Pneumatic Muscle Actuator Technology a Light Weight Power System for a Humanoid Robot
,” IEEE International Conference on Robotics and Automation
,” Leuven, Belgium, Vol. 4
, pp. 3053
–3058
.19.
McDonell
, B. W.
, and Bobrow
, J. E.
, 1998, “Modeling, Identification, and Control of a Pneumatically Actuated Robot
,” IEEE Trans. Rob. Autom.
, 14
(5
), pp. 124
–129
. 1042-296X20.
Harrison
, R.
, Weston
, R. H.
, Moore
, P. R.
, and Thatcher
, T. W.
, 1987, “A Study of Application Areas for Modular Robots
,” Robotica
, 5
, pp. 217
–221
. 0263-574721.
Thomas
, M. B.
, 2003, “Advanced Servo Control of a Pneumatic Actuator
,” Ph.D. thesis, Ohio State University, Columbus, OH.22.
Pu
, J. S.
, and Weston
, R. H.
, 1990, “Steady State Analysis of Pneumatic Servo Drives
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062, 204
, pp. 377
–387
.23.
Backé
, W.
, and Ohligschläger
, O.
, 1989, “A Model of Heat Transfer in Pneumatic Chambers
,” J. Fluid Control
8755-8564, 20
, pp. 61
–78
.24.
Andersen
, B. W.
, 1976, The Analysis and Design of Pneumatic Systems
, Robert E. Kreiger
, New York
.25.
Hong
, I. T.
, and Tessmann
, R. K.
, 1996, “The Dynamic Analysis of Pneumatic Systems Using HyPneu
,” International Fluid Power Exposition and Technical Conference
, Chicago, IL.26.
Thomas
, J. H.
, 2000, “Proper Valve Size Helps Determine Flow
,” Control Engineering Online, http://www.manufacturing.net/ctl/article/CA188679http://www.manufacturing.net/ctl/article/CA18867927.
Bobrow
, J. E.
, and Jabbari
, F.
, 1991, “Adaptive Pneumatic Force Actuation and Position Control
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 113
, pp. 267
–272
.28.
Gao
, Z.
, 2006, “Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control Design
,” Proceedings of the American Control Conference
, Minneapolis, MN, pp. 2399
–2405
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.