A Reynolds-averaged Navier-Stokes computational model of homogeneous multiphase flow is presented. Cavitation driven thrust and torque breakdown over a wide range of advance ratios is modeled for an open propeller. Computational results are presented as a form of validation against water tunnel measured thrust and torque breakdown for the propeller. Successful validation of the computational model is achieved. Additional observations are made with regards to cavity size and shape as well as cavitation breakdown behavior.

1.
Boswell
,
R. J.
, 1971, “
Design, Cavitation Performance and Open-Water Performance of a Series of Research Skewed Propellers
,”
Naval Ship Research and Development Center
, Washington, D.C., Report No. 3339.
2.
Cumming
,
R. A.
,
Morgan
,
W. B.
, and
Boswell
,
R. J.
, 1972, “
Highly Skewed Propellers
,”
Trans. SNAME (Society of Naval, Architects, and Marine Engineers
,
80
, pp.
98
155
.
3.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
, pp.
849
875
.
4.
Lindau
,
J. W.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
, and
Gibeling
,
H. J.
, 2002, “
High Reynolds Number, Unsteady, Multiphase CFD Modeling of Cavitating Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, No.
3
, pp.
607
616
.
5.
Kunz
,
R. F.
,
Lindau
,
J. W.
,
Kaday
,
T. A.
, and
Peltier
,
L. J.
, 2003, “
Unsteady Rans and Detached Eddy Simulations of Cavitating Flow Over a Hydrofoil
,”
Fifth International Symposium on Cavitation
(CAV2003),
Osaka
, Japan, November 1–4, 2003.
6.
Senocak
,
I.
, and
Shyy
,
W.
, 2002, “
Evaluation Of Cavitation Models For Navier-Stokes Computations
,” ASME Paper No. FEDSM2002-31011.
7.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
, 1998, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France.
8.
Hohenberg
,
P. C.
, and
Halperin
,
B. I.
, 1977, “
Theory of Dynamic Critical Phenomena
,”
Rev. Mod. Phys.
0034-6861,
49
, No.
3
, pp.
435
479
.
9.
Senocak
,
I.
, and
Shyy
,
W.
, 2001, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,” AIAA Paper No. 2001-2907.
10.
Taylor
,
L. K.
,
Arabshahi
,
A.
, and
Whitfield
,
D. L.
, 1995, “
Unsteady Three-Dimensional Incompressible Navier-Stokes Computations for a Prolate Spheroid Undergoing Time-Dependent Maneuvers
,” AIAA-95-0313.
11.
Hirsch
,
C.
, 1990,
Numerical Computation of Internal and External Flows
,
Wiley
, Chichester, England, Vol.
2
.
You do not currently have access to this content.