Flow over three different trailing-edge geometries is studied using incompressible detached-eddy simulation and unsteady Reynolds-averaged Navier Stokes CFD methods. Of interest is the ability of DES, coupled, with localized overset-grid refinement, to resolve the proper physics of separated flows from trailing edges—trailing-edge turbulence and vortex shedding, in particular. The DES model is shown to provide a good qualitative description of the trailing-edge flow. However, the modeled separations are overly energetic due to premature separation related to artificially low turbulence levels from upstream. The transition from RANS to DES is isolated as an issue. The simulated physics of the wake are shown to be in agreement with other LES studies: the model produces the “rib/roller” structures representing the first instability modes, horseshoe vortices are observed, and in regions of high resolution, small scales are formed, as expected. The turbulence statistics are qualitatively similar to benchmark data near the trailing edge and in the near wake, however, quantitative comparisons of urms show an over prediction in magnitude of 50%–100%. Despite this, the results are promising, and future modeling efforts have been motivated and identified.

1.
Balay
,
S.
,
Buschelman
,
K.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M.
,
Curfman McInnes
,
L.
,
Smith
,
B. F.
, and
Zhang
,
H.
, 2001, PETSc home page. http://www.mcs.anl.gov/petschttp://www.mcs.anl.gov/petsc
2.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
, 2002, “
LNS—An Approach Towards Embedded LES
,” AIAA Paper 2002–0427, Reno, NV.
3.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
, 2004, “
Interfacing Statistical Turbulence Closures With Large Eddy Simulation
,”
AIAA J.
0001-1452,
42
.
4.
Berdahl
,
C. H.
, and
Thompson
,
D. S.
, 1993, “
Eduction of Swirling Structure Using the Velocity Gradient Tensor
,”
AIAA J.
0001-1452,
31
.
5.
Blake
,
W. K.
, 1975, “
A Statistical Description of Pressure and Velocity Fields at the Trailing-Edges of a Flat Strut
,” Report 4241,
David W. Taylor Naval Ship Research and Development Center
, Bethesda, MD.
6.
Blake
,
W. K.
, and
Gershfeld
,
J. L.
, 1989,
Lecture Notes in Engineering
, volume 46 of
Frontiers in Experimental Fluid Mechanics
, Chap. The Aeroacoustics of Trailing Edges.
Springer
, Berlin.
7.
Bourgoyne
,
D. A.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
, 2005, “
Vortex Shedding From a Hydrofoil at High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
531
, pp.
293
324
.
8.
Bourgoyne
,
D. A.
,
Hamel
,
J. M.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
, 2003, “
Time-Averaged Flow Over a Hydrofoil at High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
496
, pp.
365
404
.
9.
Constantinescu
,
G. S.
,
Pacheco
,
R.
, and
Squires
,
K. D.
, 2002, “
Detached-Eddy Simulation of Flow Over a Sphere
,” AIAA Paper 2002–0425, Reno, NV.
10.
Constantinescu
,
G. S.
,
Pasinato
,
H.
,
Wang
,
Y.-Q.
, and
Squires
,
K. D.
, 2002, “
Numerical Investigation of Flow Past a Prolate Spheroid
,” AIAA Paper 2002–0588, Reno, NV.
11.
Deng
,
G. B.
,
Guilmineau
,
E.
,
Queutey
,
P.
, and
Visonneau
,
M.
, 2001, “
High Reynolds Number Simulations Over the Hifoil Project Body
,” Technical Report UMR 6598, Division Modelisation Numerique, Laboratoire de Mecanique des Fluides,
Ecole Centrale Nantes
.
13.
Hedges
,
L. S.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
, 2002, “
Detached-Eddy Simulations Over a Simplified Landing Gear
,”
J. Fluids Eng.
0098-2202,
124
, pp.
413
423
.
14.
Israel
,
D. M.
, and
Fasel
,
H. F.
, 2002, “
Numerical Investigation of Turbulent Separation Control Using Periodic Disturbances
,” AIAA Paper 2002–0409, Reno, NV.
15.
Knight
,
C. J.
, and
Peltier
,
L. J.
, 1997, “
Unsteady Viscous Simulation for Beveled Trailing Edge Flow Fields
,” AIAA Paper 1997-0662, Reno, NV.
In 35th AIAA Aerospace Sciences Meeting and Exhibit Proceedings
.
16.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
0021-9991,
140
, pp.
233
258
.
17.
Lysak
,
P. D.
, and
Brungart
,
T. A.
, 2003, “
Velocity, Spectrum Model for Turbulence Ingestion Noise From Computational Fluid Dynamics Calculations
,”
AIAA J.
0001-1452,
41
,
1827
1829
.
18.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
.
19.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
, 2003, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,” AIAA Paper 2003-0767, Reno, NV.
20.
Morton
,
S. A.
, and
Steenman
,
M. B.
, 2003, “
DES Grid Resolution Issues for Vortical Flows on a Delta Wing and an F-18C
,” AIAA Paper 2003-1103, Reno, NV.
21.
Nikitin
,
N. V.
,
Nicoud
,
F.
,
Wassistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
, 2000, “
An Approach to Wall Modeling in Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
12
, pp.
1629
1632
.
22.
Paterson
,
E. G.
,
Poremba
,
J. E.
,
Peltier
,
L. J.
, and
Hambric
,
S. A.
, 2004, “
A Physics-Based Simulation Methodology for Predicting Hydrofoil Singing
,” In
25th Symposium on Naval Hydrodynamics
,
St. Johns
, Newfoundland and Labrador, Canada.
23.
Paterson
,
E. G.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2003, “
General-Purpose Parallel Unsteady RANS Ship Hydrodynamics Code: CFDSHIP-IOWA
,” Technical Report 432,
IIHR Hydroscience and Engineering
, The University of Iowa, Iowa City, IA.
24.
Peltier
,
L. J.
, and
Hambric
,
S. A.
, 2005, “
Estimating Turbulent Boundary Layer Wall Pressure Spectra From CFD RANS Solutions
,”
J. Fluids Struct.
0889-9746, In Press.
25.
Peltier
,
L. J.
, and
Zajaczkowski
,
F. J.
, 2001, “
Maintenance of the Near-Wall Cycle of Turbulence for Hybrid RANS/LES of Fully-Developed Channel Flow
,” In
C.
Liu
and
Z.
Liu
, editors,
DNS/LES Progress and Challenges: Third AFOSR International Conference
, Arlington, TX,
Greyden Press
.
26.
Peltier
,
L. J.
,
Zajaczkowski
,
F. J.
, and
Wyngaard
,
J. C.
, 2000, “
A Hybrid RANS/LES Approach to Large-Eddy Simulation of High-Reynolds-Number Wall-Bounded Turbulence
,” FEDSM Paper 2000-11177, Boston, MA.
27.
Slimon
,
S.
, 2003, “
Computation of Internal Separated Flows Using a Zonal Detached Eddy Simulation Approach
,” In
Proceedings of the 2003 ASME International Mechanical Engineering Congress
, Washington, DC.
28.
Spalart
,
P.
, 2001, “
Young-Person’s Guide to Detached-Eddy Simulation Grids
,” Technical Report CR-2001-211032, NASS.
29.
Spalart
,
P. R.
,
Jou
,
W.-H.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,” In
C.
Liu
and
Z.
Liu
, editors,
Advances in DNS/LES: First AFOSR Int. Conf. on DNS/LES
,
Greyden Press
, Columbus, OH.
30.
Speziale
,
C. G.
, 1998, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
0001-1452,
36
, pp.
173
184
.
31.
Strelets
,
M.
, 2001, “
Detached-Eddy Simulation of Massively Separated Flows
,” AIAA Paper 2001-0879, Reno, NV. In
39th AIAA Aerospace Sciences Meeting and Exhibit Proceedings
.
32.
Suhs
,
N. E.
,
Dietz
,
W. E.
,
Rogers
,
S. E.
,
Nash
,
S. M.
, and
Onufer
,
T.
, 2000, J. Pegasus user’s guide, version 5.1e. Technical report, NASA.
33.
Wang
,
M.
, 2000, “
Dynamic Wall Modeling for LES of Complex Turbulent Flows
,” Annual research briefs 2000, Center for Turbulence Research, Stanford University.
34.
Wang
,
M.
, and
Moin
,
P.
, 2000, “
Computation of Trailing-Edge Flow and Noise Using Large-Eddy Simulation
,”
AIAA J.
0001-1452,
38
, pp.
2201
2209
.
You do not currently have access to this content.