A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference method of the dual time-stepping integration procedure and Roe’s flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Two-dimensional internal flows through a backward-facing step duct, convergent-divergent nozzles and decelerating cascades are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

1.
Matsumoto, Y., Kanbara, T., Sugiyama, K., and Tamura, Y., 1998, “Numerical Study of Cavitating Flow on a Hydrofoil,” Proc. ASME PVP Conf. ASME PVP-Vol. 377-2, pp. 243–248.
2.
Deshpande
,
M.
et al.
,
1997
, “
Numerical Modeling of the Thermodynamic Effects of Cavitation
,”
J. Fluids Eng.
,
119
, pp.
420
427
.
3.
Reboud, J. L. et al., 1998, “Two-Phase Flow Structure of Cavitation: Experimental and Modeling of Unsteady Effects,” Proc. 3rd Int. Symp. on Cavitation, 1, pp. 203–208.
4.
Chen
,
Y.
, and
Heister
,
S. D.
,
1995
, “
Two-Phase Modeling of Cavitated Flows
,”
Comput. Fluids
,
24
, pp.
799
809
.
5.
Singhal, A. K. et al., 1997, “Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change,” ASME Paper FEDSM97-3272.
6.
Merkle, C. L. et al., 1998, “Computational Modeling of the Dynamics of Sheet Cavitation,” Proc. 3rd Int. Symp. on Cavitation, 2, pp. 307–311.
7.
Shin
,
B. R.
,
Iwata
,
Y.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Simulation of Unsteady Cavitating Flows Using a Homogeneous Equilibrium Model
,”
Comp. Mech.
,
30
, pp.
388
395
.
8.
Iga
,
Y.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
, pp.
643
651
.
9.
Yee, H. C., 1987, “Upwind and Symmetric Shock-Capturing Scheme,” NASA TM-89464, 1987.
10.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
, pp.
101
136
.
11.
Shin, B. R., and Ikohagi, T., 1999, “Numerical Analysis of Unsteady Cavity Flows Around a Hydrofoil,” ASME Paper FEDSM99-7215.
12.
Shin, B. R. et al., 2001, “Numerical Analysis of Cavitating Flow Through a 2-D Decelerating Cascade,” Proc. 1st Int. Conf. on Comput. Fluid Dyn, ICCFD, Computational Fluid Dynamics 2000, (ed., N. Satofuka), Springer-Verlag, Berlin, pp. 651–656.
13.
Shin, B. R., 2001, “Numerical Analysis of Unsteady Cavitating Flow by a Homogeneous Equilibrium Model,” AIAA Paper 2001–2909.
14.
Chen
,
H. T.
, and
Collins
,
R.
,
1971
, “
Shock Wave Propagation Past on Ocean Surface
,”
J. Comput. Phys.
,
7
, pp.
89
101
.
15.
Beattie
,
D. R. H.
, and
Whally
,
P. B.
,
1982
, “
A Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8
, pp.
83
87
.
16.
Choi
,
Y. H.
, and
Merkle
,
C. L.
,
1993
, “
The Application of Preconditioning in Viscous Flows
,”
J. Comput. Phys.
,
105
, pp.
207
233
.
17.
Edwards
,
J. R.
et al.
,
2000
, “
Low-Diffusion Flux-Splitting Methods for Real Fluid Flows With Phase Transitions
,”
AIAA J.
,
38
, pp.
1624
1633
.
18.
Weiss
,
J. M.
, and
Smith
,
W. A.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
, pp.
2050
2057
.
19.
Kunz
,
R. F.
et al.
,
2000
, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
, pp.
849
875
.
20.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Scheme
,”
J. Comp. Phys.
,
43
, pp.
357
372
.
21.
Shin
,
B. R.
,
2003
, “
A Stable Numerical Method Applying a TVD Scheme for Incompressible Flow
,”
AIAA J.
,
41
(
1
), pp.
49
55
.
22.
Jameson, A. et al., 1981, “Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259.
23.
Kueny
,
J. L.
, and
Binder
,
G.
,
1984
, “
Viscous Flow Over Backward Facing Steps, An Experimental Investigation
,”
Note on Numerical Fluid Mechanics
,
9
, pp.
32
47
, Vieweg.
24.
Shin
,
B. R.
et al.
,
1993
, “
An Unsteady Implicit SMAC Scheme for Two-Dimensional Incompressible Navier-Stokes Equations
,”
JSME Int. J.
,
36-B
, pp.
598
606
.
25.
Murai
,
H.
, and
Ibuki
,
S.
,
1981
, “
Research on Axial-Flow Turbomachinery With Swept-Back or Swept-Forward Blades (Report 1, Experimental Research on Cascade of Swept-Back Blades)
,”
Mem. Inst. High Speed Mech., Tohoku Univ.
,
47
, pp.
117
142
.
26.
Kikuchi
,
H.
,
1959
, “An Experimental Study on Stall Chaaracteristics in Decelerating Cascade (Report 1),”
Mem. Inst. High Speed Mech., Tohoku Univ.
,
14
(
139
), pp.
193
219
.
27.
Stutz
,
B.
, and
Reboud
,
J. L.
, “
Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
29
, pp.
545
552
.
28.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Two Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
9
(
12
),
3678
3686
.
You do not currently have access to this content.