Recently, Eulerian methods for capturing interfaces in multi-fluid problems become increasingly popular. While these methods can effectively handle significant deformations of interface, the treatment of the boundary conditions in certain classes of compressible flows are known to produce nonphysical oscillations due to the radical change in equation of state across the material interface. One promising recent development to overcome these problems is the Ghost Fluid Method (GFM). The present study initiates a new methodology for boundary condition capturing in multifluid compressible flows. The method, named Characteristics-Based Matching (CBM), capitalizes on recent developments of the level set method and related techniques, i.e., PDE-based re-initialization and extrapolation, and the Ghost Fluid Method (GFM). Specifically, the CBM utilizes the level set function to capture interface position and a GFM-like strategy to tag computational nodes. In difference to the GFM method, which employs a boundary condition capturing in primitive variables, the CBM method implements boundary conditions based on a characteristic decomposition in the direction normal to the boundary. In this way overspecification of boundary conditions is avoided and we believe so will be spurious oscillations. In this paper, we treat (moving or stationary) fluid-solid interfaces and present numerical results for a select set of test cases. Extension to fluid-fluid interfaces will be presented in a subsequent paper.

1.
Godunov
,
S. K.
,
1959
, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of Hydrodynamics
,”
Mat. Sb.
,
47
(
3
), pp.
271
306
.
2.
LeVeque, R. J., 1992, Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zu¨rich, Birkha¨user Verlag, Basel-Boston-Berlin.
3.
Karni
,
S.
,
1996
, “
Multicomponent Flow Calculations by a Consistent Primitive Algorithm
,”
J. Comput. Phys.
,
112
, pp.
31
43
.
4.
Abgrall
,
R.
,
1996
, “
How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach
,”
J. Comput. Phys.
,
125
, pp.
150
160
.
5.
Karni
,
S.
,
1996
, “
Hybrid Multifluid Algorithms
,”
SIAM J. Sci. Comput. (USA)
,
17
(
5
), pp.
1019
1039
.
6.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
,
457
492
.
7.
Chern
,
I.-L.
,
Glimm
,
J.
,
McBryan
,
O.
,
Plohr
,
B.
, and
Yaniv
,
S.
,
1986
, “
Front Tracking for Gas Dynamics
,”
J. Comput. Phys.
,
62
, pp.
83
110
.
8.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
,
12
49
.
9.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
, pp.
220
252
.
10.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
11.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
112
152
.
12.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
, pp.
25
37
.
13.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
, pp.
2182
2189
.
14.
Fedkiw
,
R. P.
,
Marquina
,
A.
, and
Merriman
,
B.
,
1999
, “
An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows
,”
J. Comput. Phys.
,
148
,
545
578
.
15.
Fedkiw
,
R. P.
,
2002
, “
Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation With the Ghost Fluid Method
,”
J. Comput. Phys.
,
175
,
200
224
.
16.
Thompson
,
K. W.
,
1990
, “
Time-Dependent Boundary Conditions for Hyperbolic Systems, II
,”
J. Comput. Phys.
,
89
, pp.
439
461
.
17.
Nourgaliev, R. R., Dinh, T. N., Suschikh, S. Yu., Yuen, W. W., and Theofanous, T. G., 2003, “The Characteristics-Based Matching Method for Compressible Flow in Complex Geometries,” AIAA 2003-0247, 41st AIAA Aerospace Sciences Meeting and Exhibit, January 6–9, 2003, Reno, NV, USA.
18.
Sethian, J. A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press.
19.
Nourgaliev, R. R., Dinh, T. N., and Theofanous, T. G., 2004, “A Pseudocompressibility Method for the Simulation of Single- and Multiphase Incompressible Flows,” Int. J. Multiphase Flow, (in press).
20.
Nourgaliev, R. R., Dinh, T. N., and Theofanous, T. G., 2003, “On Capturing of Interfaces in Multimaterial Compressible Flows Using a Level-Set-Based Cartesian Grid Method. Multiphase Compressible Fluid-Solid (Particulate) Flows,” CRSS Research Report 05/03-1, 53p., May 23, 2003.
21.
Fedkiw, R., Merriman, B., Donat, R., and Osher, S., 1998, “The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina’s Flux Splitting,” Progress in Numerical Solutions of Partial Differential Equations, Arcachon, France, edited by M. Hafez, July 1998.
22.
Shu
,
C.-W.
, and
Osher
,
S.
,
1989
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes II (Two)
,”
J. Comput. Phys.
,
83
,
32
78
.
23.
Shu, C.-W., 1997, “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws,” NASA/CR-97-206253, ICASE Report No. 97-65.
24.
Anderson, J. D., 1995, Computational Fluid Dynamics, The Basics With Applications, McGraw-Hill, Inc.
25.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
, pp.
104
129
.
26.
Peng
,
D. P.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
, pp.
410
438
.
27.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
,
1
31
.
28.
Menikoff
,
R.
,
1994
, “
Errors When Shocks Waves Interact due to Numerical Shock Width
,”
SIAM J. Sci. Comput. (USA)
,
15
(
5
), p.
1227
1227
.
29.
Noh
,
W.
,
1978
, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
,
72
, p.
78
78
.
30.
Donat
,
R.
, and
Marquina
,
A.
,
1996
, “
Capturing Shock Reflections: An Improved Flux Formula
,”
J. Comput. Phys.
,
125
,
42
58
.
31.
Fursenko
,
A. A.
,
Sharov
,
D. M.
,
Timofeev
,
E. V.
, and
Voinovich
,
P. A.
,
1992
, “
Numerical Simulation of Shock Wave Interaction With Channel Beds and Gas Nonuniformities
,”
Comput. Fluids
,
21
(
3
), pp.
377
396
.
32.
Goloviznin, V. P., Zhmakin, A. I., Komissaruk, B. A., Mende, H. P., and Fursenko, A. A., 1981, “On Propagation of Shock Waves in Planar and Axisymetric Channels,” Preprint of FTI—709, Leningrad, 49 p. (In Russian).
33.
Dukhovski
,
I. A.
,
Komissaruk
,
B. A.
,
Kovalev
,
P. I.
, and
Mende
,
H. P.
,
1985
, “
High-Speed Photography of the Interaction of a Water Drop With a Supersonic Sphere
,”
Opt. Laser Technol.
,
17
(
3
), pp.
148
150
.
You do not currently have access to this content.