The present work deals with the analysis of the fully developed laminar flow through silicon microchannels. The main integral flow parameters, such as the Poiseuille number fRe, the momentum flux correction factor, the kinetic energy correction factor, the asymptotic incremental pressure drop number and the approximate value of the hydrodynamic entrance length are numerically evaluated for trapezoidal and double-trapezoidal cross sections of the silicon microchannels. The results are quoted in tabular and in graphic form as a function of the microchannel aspect ratio. Finally, very simple polynomial representations of the integral flow parameters are given. These numerical data are a useful tool for technicians and designers involved in micro-fluidic applications and it is demonstrated that these results can be used (instead of or before a CFD simulation approach) for a first evaluation of the pressure drop for liquid flows through smooth microchannels having a hydraulic diameter greater than 30 μm.

1.
Pfund, D. A., Shekarriz, A., Popescu, A., and Welty, J. R., 1998, “Pressure Drops Measurements in Microchannels,” MEMS, ASME-DSC, 66, pp. 193–198.
2.
Qu
,
W.
,
Mala
,
M.
, and
Li
,
D.
,
2000
, “
Pressure-driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
43
, pp.
353
364
.
3.
Celata, G. P., Cumo, M., Guglielmi, M., and Zummo, G., 2000, “Experimental Investigation of Hydraulic and Single Phase Heat Transfer in 0.130 mm Capillary Tube,” Proc. International Conference On Heat Transfer and Transport Phenomena in Microscale, G. P. Celata et al. eds., Begell House, New York, pp. 108–113.
4.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small Scale Micro-channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
44
, pp.
1039
1051
.
5.
Kandlikar, S. G., Joshi, S., and Tian, S., 2001, “Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes,” Proc. of 35th National Heat Transfer Conference, paper 12134, June 10–12, Anaheim CA.
6.
Pfalher
,
J.
,
Harley
,
J.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1990
, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators, A
,
21–23
, pp.
431
434
.
7.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
45
, pp.
5133
5141
.
8.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
41
, pp.
4229
4249
.
9.
Ren
,
L.
,
Qu
,
W.
, and
Li
,
D.
,
2001
, “
Interfacial Electrokinetic Effects on Liquid Flow in Microchannels
,”
Int. J. Heat Mass Transfer
44
, pp.
3125
3134
.
10.
Palm
,
B.
,
2001
, “
Heat Transfer in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
3
), pp.
155
175
.
11.
Obot, N. T., 2000, “Toward a Better Understanding of Friction and Heat/Mass Transfer in Microchannels—A Literature Review,” Proc. International Conference On Heat Transfer and Transport Phenomena in Microscale, G. P. Celata et al., eds., Begell House, New York, 1, pp. 72–79.
12.
Xu
,
B.
,
Ooi
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
,
2000
, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
27
, pp.
1165
1176
.
13.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
45
, pp.
3477
3489
.
14.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
46
, pp.
2519
2525
.
15.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Laminar Friction Factor in Microscale Ducts of Irregular Cross-Section
,”
Microscale Thermophys. Eng.
,
1
, pp.
253
265
.
16.
Lundgren
,
T. S.
,
Sparrow
,
E. M.
, and
Starr
,
J. B.
,
1964
, “
Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section
,”
J. Basic Eng.
,
86
, pp.
620
626
.
17.
Mc Comas
,
S. T.
,
1967
, “
Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Section
,”
J. Basic Eng.
,
89
, pp.
847
850
.
18.
FLEXPDE™, Finite element Software, PDE Solution Inc., 1999.
19.
Shah
,
R. K.
, and
London
,
A.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Adv. Heat Transfer
,
14
, pp.
196
220
.
20.
Richter
,
M.
,
Woias
,
P.
, and
Weißb
,
D.
,
1997
, “
Microchannels for Applications in Liquid Dosing and Flow-Rate Measurements
,”
Sens. Actuators, A
,
62
, pp.
480
483
.
21.
Damean
,
N.
, and
Regtien
,
P. P. L.
,
2001
, “
Poiseuille Number for the Fully Developed Laminar Flow Through Hexagonal Ducts Etched in 〈100〉 Silicon, Sensors and Actuators A
,”
Sens. Actuators, A
,
90
, pp.
96
101
.
You do not currently have access to this content.