Partition of the stress dissipation has been studied in an axisymmetric strained flow field to assess the possible existence of local isotropy for turbulence at small scales. This is a simple flow to study because the axes of anisotropy of the Reynolds stresses and of the dissipation tensor are aligned. Using invariant theory, the relationship between the stress and dissipation tensors was derived, satisfying restrictions for the limiting states of turbulence and the assumed behavior for large Reynolds number and small anisotropy. The role of the anisotropy in constraining models for the turbulent dissipation rate and the pressure-strain correlations is discussed. Comparisons of the resulting closure with experimental data for several axisymmetric flows are good within the limitations of the data.

1.
Kolmogorov
,
A. N.
,
1941
, “
Local Structure of Turbulence in an Incompressible Fluid at Very High Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
299
303
.
2.
Kolmogorov
,
A. N.
,
1942
, “
Equations of Motion of an Incompressible Turbulent Fluid
,”
Izv. Akad. Nauk SSR Ser. Fiz. Mat. Nauk
,
6
, pp.
56
58
.
3.
Launder, B. E., 1971, “Mathematical Models and Turbulence—Lecture 1,” Mechanical Engineering Department, Imperial College, London, s. 17.
4.
Chou
,
P. Y.
,
1945
, “
On the Velocity Correlation and the Solution of the Equation of Turbulent Fluctuation
,”
Q. Appl. Math.
,
3
, pp.
38
54
.
5.
Kolovandin
,
B. A.
, and
Vatutin
,
I. A.
,
1972
, “
Statistical Transfer Theory in Non-homogeneous Turbulence
,”
Int. J. Heat Mass Transf.
,
15
, pp.
2371
2383
.
6.
Jovanovic´, J., Ye, Q.-Y., and Durst, F., 1992, “Refinement of the Equation for the Determination of Turbulent Micro-scale,” Universita¨t Erlangen-Nu¨rnberg, Report Number LSTM 349/T/92.
7.
Jovanovic´
,
J.
,
Ye
,
Q.-Y.
, and
Durst
,
F.
,
1995
, “
Statistical Interpretation of the Turbulent Dissipation Rate in Wall-Bounded Flows
,”
J. Fluid Mech.
,
293
, pp.
321
347
.
8.
Durbin
,
P. A.
, and
Speziale
,
C. G.
,
1991
, “
Local Anisotropy in Strained Turbulence at High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
113
, pp.
707
709
.
9.
Lumley
,
J. L.
,
1992
, “
Some Comments on Turbulence
,”
Phys. Fluids
,
4
, pp.
203
211
.
10.
Batchelor, G. K., 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK, pp. 68–75.
11.
Uberoi
,
M. S.
,
1957
, “
Equipartition of Energy and Local Isotropy in Turbulent Flows
,”
J. Appl. Phys.
,
28
, pp.
1165
1170
.
12.
Monin, A. S., and Yaglom, A. M., 1975, Statistical Fluid Mechanics, Vol. 2, M.I.T. Press, Cambridge, MA, pp. 453–461.
13.
Antonia
,
R. A.
,
Anselment
,
F.
, and
Chambers
,
A. J.
,
1986
, “
Assessment of Local Isotropy Using Measurements in a Turbulent Plane Jet
,”
J. Fluid Mech.
,
169
, pp.
365
391
.
14.
Saddoughi
,
S. G.
, and
Veeravalli
,
S. V.
,
1994
, “
Local Isotropy in Turbulent Boundary Layers at High Reynolds Number
,”
J. Fluid Mech.
,
268
, pp.
333
372
.
15.
Lumley
,
J. L.
,
1978
, “
Computational Modelling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
16.
Jovanovic´
,
J.
, and
Otic´
,
I.
,
2000
, “
On the Constitutive Relation for the Reynolds Stresses and the Prandtl-Kolmogorov Hypothesis of Effective Viscosity in Axisymmetric Strained Turbulence
,”
ASME J. Fluids Eng.
,
122
, pp.
48
50
.
17.
Rogallo, R. S., 1981, “Numerical Experiments in Homogeneous Turbulence,” NASA Technical Memo. 81315.
18.
Ye, Q.-Y., 1996, “Die turbulente Dissipation mechanischer Energie in Scherschichten,” Ph.D. thesis, Universita¨t Erlangen-Nu¨rnberg.
19.
Rotta
,
J. C.
,
1951
, “
Statistische Theorie nichthomogener Turbulenz
,”
Z. Phys.
,
129
, pp.
547
572
.
20.
Kolmogorov
,
A. N.
,
1941
, “
On Degeneration of Isotropic Turbulence in an Incompressible Viscous Liquid
,”
Dokl. Akad. Nauk SSSR
,
6
, pp.
538
540
.
21.
Sreenivasan
,
K. R.
,
1984
, “
On the Scaling of the Turbulence Energy Dissipation Rate
,”
Phys. Fluids
,
27
, pp.
1048
1051
.
22.
Hinze, J. O., 1975, Turbulence, 2nd Ed., McGraw-Hill, New York, p. 260.
23.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, M.I.T. Press, Cambridge, MA.
24.
Corrsin, S., 1963 “Turbulence: Experimental Methods,” Handbuch der Physik, Vol. VIII/2, Springer, Berlin, pp. 524–590.
25.
Uberoi
,
M. S.
,
1956
, “
Effects of Wind-Tunnel Contraction on Free Stream Turbulence
,”
J. Aero. Sci.,
,
23
, pp.
754
764
.
26.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
,
1966
, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
, pp.
657
682
.
27.
Hussain
,
A. K. M. F.
, and
Ramjee
,
V.
,
1976
, “
Effects of the Axisymmetric Contraction Shape on Incompressible Turbulent Flow
,”
ASME J. Fluids Eng.
,
98
, pp.
58
69
.
28.
Garg
,
S.
, and
Warhaft
,
Z.
,
1998
, “
On the Small Scale Structure of Simple Shear Flow
,”
Phys. Fluids
,
10
, pp.
662
673
.
29.
Pumir
,
A.
, and
Shraiman
,
B. I.
,
1995
, “
Persistent Small Scale Anisotropy in Homogeneous Shear Flows
,”
Phys. Rev. Lett.
,
75
, pp.
3114
3117
.
30.
Lee, M. J., 1985, “Numerical Experiments on the Structure of Homogeneous Turbulence,” Ph.D. thesis, Stanford University, Stanford, CA.
31.
Davidson
,
P. A.
,
2000
, “
Was Loitsyansky Correct? A Review of the Arguments
,”
J. Turb.,
,
1
, pp.
1
13
.
32.
Saffman
,
P. G.
,
1967
, “
Note on Decay of Homogeneous Turbulence
,”
Phys. Fluids
,
10
, pp.
13
49
.
33.
Kolovandin
,
B. A.
,
1991
, “
Modelling the Dynamics of Turbulent Transport Process
,”
Adv. Heat Transfer
,
21
, pp.
185
237
.
34.
Jovanovic´, J., Ye, Q.-Y., Jakirlic´, S., and Durst, F., 2001, “Turbulence Closure for the Dissipation Rate Correlations,” Universita¨t Ernalngen-Nu¨rnberg, Report Number LSTM 618/T.
35.
Coleman, G. N., and Mansour, N. N., 1991, “Simulation and Modelling of Homogeneous Compressible Turbulence Under Isotropic Mean Compression,” Proc. Eight. Symp. on Turbulent Shear Flows, Technische Universita¨t Mu¨nchen, Munich, pp. 21.3.1–21.3.6.
36.
Mansour
,
N. N.
, and
Wray
,
A. A.
,
1994
, “
Decay of Isotropic Turbulence at Low Reynolds Number
,”
Phys. Fluids
,
6
, pp.
808
814
.
37.
Poinsot, T. J., 1991, “Flame Ignition in a Premixed Turbulent Flow,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 251–272.
38.
Bernsdorf
,
J.
,
Brenner
,
G.
, and
Durst
,
F.
,
1998
, “
Simulation of a 2D Channel Flow Around a Square Obstacle With Lattice-Boltzmann Automata
,”
Int. J. Mod. Phys. C
,
9
, pp.
1129
1141
.
39.
Lumley
,
J. L.
, and
Newman
,
G.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
, pp.
161
178
.
40.
Fischer
,
M.
,
Jovanovic´
,
J.
, and
Durst
,
F.
,
2001
, “
Reynolds Number Effects in the Near-Wall Region of Turbulent Channel Flows
,”
Phys. Fluids
,
13
, pp.
1755
1767
.
41.
Spalart
,
P. R.
,
1986
, “
Numerical Study of Sink-Flow Boundary Layers
,”
J. Fluid Mech.
,
172
, pp.
307
328
.
42.
Seidl, V., 1997, “Entwicklung und Anwendung eines Parallelen Finite-Volumen-Verfahrens zur Stro¨mungssimulation auf unstrukturierten Gittern mit lokaler Verfeinerung,” Institut fu¨r Schiffbau, Universita¨t Hamburg, Bericht Nr. 585.
43.
Crow
,
S. C.
,
1968
, “
Viscoelastic Properties of Fine-Grained Incompressible Turbulence
,”
J. Fluid Mech.
,
33
, pp.
1
20
.
44.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.
45.
Hallba¨ck
,
M.
,
Groth
,
J.
, and
Johansson
,
A. V.
,
1990
, “
An Algebraic Model for Nonisotropic Turbulent Dissipation Rate in Reynolds Stress Closures
,”
Phys. Fluids A
,
2
, pp.
1859
1866
.
46.
Reynolds, W. C., 1984, “Physical and Analytical Foundations, Concepts and New Directions in Turbulence Modelling and Simulation,” Turbulence Models and Their Applications, B. E. Launder, W. C. Reynolds, W. Rodi, J. Mathieu, and D. Jeandel, eds., 2, CEA-EDF INRIA, Paris, Thermosciences Division, Mechanical Engineering Department, Stanford University, Stanford, CA, pp. 150–294.
47.
Ferziger, J., 1980, “Homogeneous Turbulent Flows,” Proceedings 1980-81 AFOSR-HTTM Stanford Conference on Complex Turbulent Flows, S. J. Kline, B. J. Cantwell, and G. M. Lilley, eds., I, Stanford University, CEA-EDF INRIA, Eyrolles, Paris, pp. 405–433.
48.
Kovasznay, L. S. G., 1966, “Turbulence Measurements,” Applied Mechanics Surveys, ASME, New York, pp. 971–982.
49.
Uberoi
,
M. S.
, and
Wallis
,
S.
,
1966
, “
Small Axisymmetric Contraction of Grid Turbulence
,”
J. Fluid Mech.
,
24
, pp.
539
543
.
50.
Tan-atichat, J., 1980, “Effects of Axisymmetric Contractions on Turbulence of Various Scales,” Ph.D. thesis, Illinois Institute of Technology.
51.
Batchelor
,
G. K.
, and
Proudman
,
I.
,
1954
, “
The Effect of Rapid Distortion of a Fluid in Turbulent Motion
,”
Q. J. Mech. Appl. Math.
,
7
, pp.
83
103
.
52.
Ribner, H. S., and Tucker, M., 1952, “Spectrum of Turbulence in a Contracting Stream,” NASA Technical Note 2606.
53.
Traugott, S. C., 1958, “Influence of Solid-Body Rotation on Screen-Produced Turbulence,” NACA Technical Note 4135.
54.
Ibbetson
,
A.
, and
Tritton
,
D.
,
1975
, “
Experiments on Turbulence in a Rotating Fluid
,”
J. Fluid Mech.
,
68
, pp.
639
672
.
55.
Wigeland, R. A., and Nagib, H. M., 1978, “Grid-Denerated Turbulence With and Without Rotation About the Streamwise Direction,” Report R78-1, Illinois Institute of Technology.
56.
Hopfinger
,
E. J.
,
Browand
,
F. K.
, and
Gagne
,
Y.
,
1982
, “
Turbulence and Waves in a Rotating Tank
,”
J. Fluid Mech.
,
125
, pp.
505
534
.
57.
Jacquin
,
L.
,
Leuchter
,
O.
,
Cambon
,
C.
, and
Mathieu
,
J.
,
1990
, “
Homogeneous Turbulence in the Presence of Rotation
,”
J. Fluid Mech.
,
220
, pp.
1
52
.
58.
Veeravalli, S. V., 1990, “An Experimental Study of the Effects of Rapid Rotation on Turbulence,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 203–220.
59.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Rogallo
,
R. S.
,
1995
, “
Effect of Rotation on Isotropic Turbulence: Computation and Modelling
,”
J. Fluid Mech.
,
154
, pp.
321
336
.
60.
Speziale, C. G., Mansour, N. N., and Rogallo, R. S., 1987, “Decay of Turbulence in a Rapidly Rotating Frame,” Studing Turbulence Using Numerical Simulation Databases, Center for Turbulence Research, Stanford University, Report CTR-S87, pp. 205–212.
61.
Bradshaw, P., 1971, An Introduction to Turbulence and its Measurement, Pergamaon, London, pp. 14–17.
You do not currently have access to this content.