This work investigates the application of a high-order finite difference method for compressible large-eddy simulations on stretched, curvilinear and dynamic meshes. The solver utilizes 4th and 6th-order compact-differencing schemes for the spatial discretization, coupled with both explicit and implicit time-marching methods. Up to 10th order, Pade-type low-pass spatial filter operators are also incorporated to eliminate the spurious high-frequency modes which inevitably arise due to the lack of inherent dissipation in the spatial scheme. The solution procedure is evaluated for the case of decaying compressible isotropic turbulence and turbulent channel flow. The compact/filtering approach is found to be superior to standard second and fourth-order centered, as well as third-order upwind-biased approximations. For the case of isotropic turbulence, better results are obtained with the compact/filtering method (without an added subgrid-scale model) than with the constant-coefficient and dynamic Smagorinsky models. This is attributed to the fact that the SGS models, unlike the optimized low-pass filter, exert dissipation over a wide range of wave numbers including on some of the resolved scales. For channel flow simulations on coarse meshes, the compact/filtering and dynamic models provide similar results, with no clear advantage achieved by incorporating the SGS model. However, additional computations at higher Reynolds numbers must be considered in order to further evaluate this issue. The accuracy and efficiency of the implicit time-marching method relative to the explicit approach are also evaluated. It is shown that a second-order iterative implicit scheme represents an effective choice for large-eddy simulation of compressible wall-bounded flows.

1.
Lesieur
,
M.
, and
Metais
,
O.
,
1996
, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
45
82
.
2.
Liu, C., and Liu, Z., eds. 1997, Advances in DNS/LES, Proceedings of First AFOSR International Conference on DNS/LES, Ruston, LA, Aug., Greyden Press.
3.
Knight, D., and Sakell, L., eds., 1999, Recent Advances in DNS and LES, Proceedings of Second AFOSR International Conference on DNS/LES, New Brunswick, NJ, June, Kluwer, Dordrecht, The Netherlands.
4.
Ghosal
,
S.
,
1999
, “
Mathematical and Physical Constraints on Large-Eddy Simulation of Turbulence
,”
AIAA J.
,
37
(
4
), pp.
425
433
.
5.
Kravchenko
,
A.
, and
Moin
,
P.
,
1997
, “
On the Effects of Numerical Errors in Large Eddy Simulation of Turbulent Flows
,”
J. Comput. Phys.
,
131
(
2
), pp.
310
322
.
6.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
, pp.
16
42
.
7.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.
8.
Gaitonde, D. V., and Visbal, M. R., 1999, “Further Development of a Navier-Stokes Solution Procedure Based on Higher-Order Formulas,” AIAA Paper No. 99-0557.
9.
Gaitonde
,
D. V.
,
Shang
,
J. S.
, and
Young
,
J. L.
,
1999
, “
Practical Aspects of Higher-Order Numerical Schemes for Wave Propagation Phenomena
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1849
1869
.
10.
Gaitonde, D. V., and Visbal, M. R., 1998, “High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into FDL3DI,” Technical Report AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Wright-Patterson AFB, OH.
11.
Visbal, M. R., and Gordnier, R. E., 2000, “A High-Order Flow Solver for Deforming and Moving Meshes,” AIAA Paper No. 2000-2619.
12.
Visbal
,
M.
, and
Gaitonde
,
D.
,
2001
, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Comput. Acoust.
,
9
(
4
), pp.
1259
1286
.
13.
Vinokur
,
M.
,
1974
, “
Conservation Equations of Gasdynamics in Curvilinear Coordinate Systems
,”
J. Comput. Phys.
,
14
, pp.
105
125
.
14.
Steger
,
J. L.
,
1976
, “
Implicit Finite-Difference Simulation of Flow About Arbitrary Two-Dimensional Geometries
,”
AIAA J.
,
16
(
7
), pp.
679
686
.
15.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, New York.
16.
Erlebacher
,
G.
,
Hussaini
,
M. Y.
,
Speziale
,
C. G.
, and
Zang
,
T. A.
,
1992
, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
Journal of Fluid Mechanics
,
238
, pp.
155
185
.
17.
Smagorinsky
,
J. S.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
1
), pp.
99
165
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
19.
Moin
,
P.
,
Squires
,
W.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
.
20.
Rizzetta, D. P., Visbal, M. R., and Blaisdell, G. A., 1999, “Application of a High-Order Compact Difference Scheme to Large-Eddy and Direct Numerical Simulation,” AIAA Paper No. 99-3714.
21.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
, pp.
101
136
.
22.
Alpert
,
P.
,
1981
, “
Implicit Filtering in Conjunction With Explicit Filtering
,”
J. Comput. Phys.
,
44
, pp.
212
219
.
23.
Vichnevetsky, R., and Bowles, J. B., 1982, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM Studies in Applied Mathematics), SIAM, Philadelphia.
24.
Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the Euler Equations by a Finite Volume Method Using Runge-Kutta Time Stepping Schemes,” AIAA Paper No. 81-1259.
25.
Pulliam
,
T.
,
1986
, “
Artificial Dissipation models for the Euler Equations
,”
AIAA J.
,
24
(
12
), pp.
1931
1940
.
26.
Tam
,
C. K. W.
,
1995
, “
Computational Aeroacoustics: Issues and Methods
,”
AIAA J.
,
33
(
10
), pp.
1788
1796
.
27.
Thomas
,
P. D.
, and
Lombard
,
C. K.
,
1979
, “
Geometric Conservation Law and Its Application to Flow Computations on Moving Grids
,”
AIAA J.
,
17
(
10
), pp.
1030
1037
.
28.
Beam
,
R.
, and
Warming
,
R.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.
29.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.
30.
Visbal, M., 2001, “Advances in High-Resolution Schemes for Computational Acoustics on General Geometries,” RTO-MP-079(A), Proceedings From RTO Symposium on Aging Mechanisms and Control/Part A: Developments in Computational Aero- and Hydro-Acoustics, RTO Applied Vehicle Technology Panel, Manchester, UK, Oct.
31.
Visbal, M. R., Gaitonde, D. V., and Gogineni, S. P., 1998, “Direct Numerical Simulation of a Forced Transitional Plane Wall Jet,” AIAA Paper No. 98-2643.
32.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
M. J.
, 1999, “Numerical Investigation of Synthetic-Jet Flow Fields,” AIAA J., 37(8).
33.
Visbal, M. R., and Gordnier, R. E., 2001, “Direct Numerical Simulation of the Interaction of a Boundary Layer With a Flexible Panel,” AIAA Paper No. 2001-2721.
34.
Rizzetta, D. P., Visbal, M. R., and Gaitonde, D. V., 2000, “Direct Numerical and Large-Eddy Simulation of Supersonic Flows by a High-Order Method,” AIAA Paper No. 2000-2408.
35.
Rizzetta, D. P., and Visbal, M. R., 2001, “Large-Eddy Simulation of Supersonic Compression-Ramp Flows,” AIAA Paper No. 2001-2858.
36.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2001
, “
Large-Eddy Simulation of Supersonic Compression-Ramp Flow by a Hihg-Order Method
,”
AIAA J.
,
39
(
12
), pp.
2283
2292
.
37.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.
38.
Grinstein, F., and Fureby, C., 2002, “Recent Progress on Miles for High Reynolds-Number Flows,” AIAA Paper No. 2002-0134.
39.
Domaradzki, J., and Radhakrishnan, S., 2002, “Subgrid-Scale Modeling Using Truncated Navier-Stokes Dynamics,” AIAA Paper No. 2002-0285.
40.
Stolz
,
S.
, and
Adams
,
N.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
,
11
(
7
), pp.
1699
1701
.
41.
Spyropoulos
,
E. T.
, and
Blaisdell
,
G. A.
,
1996
, “
Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence
,”
AIAA J.
,
34
(
5
), pp.
990
998
.
42.
Hughes
,
T. J.
,
Mazzei
,
L.
, and
Jansen
,
K.
, 2000, “Large Eddy Simulation and the Variational Multiscale Method,” Comput. Visual. Sci., 3, pp. 47–59.
43.
Schumann
,
U.
,
1975
, “
Subgrid-Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
,
18
(
4
), pp.
376
404
.
44.
Piomelli
,
U.
,
1993
, “
High Reynolds Number Calculations Using the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids
,
5
(
6
), pp.
1484
1490
.
45.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1992
, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
ASME J. Fluids Eng.
,
117
, pp.
133
166
.
46.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
(
1
), pp.
1
4
.
You do not currently have access to this content.