A numerical simulation is performed on a single-stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at the design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.

1.
Van den Braembussche
,
R. A.
, and
Hande
,
B. M.
,
1990
, “
Experimental and Theoretical Study of the Swirling Flow in Centrifugal Compressor Volutes
,”
ASME J. Turbomach.
112
, pp.
38
43
.
2.
Ayder
,
E.
,
Van den Braembussche
,
R.
, and
Brasz
,
J. J.
,
1993
, “
Experimental and Theoretical Analysis of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
115
, pp.
582
589
.
3.
Ayder
,
E.
, and
Van den Braembussche
,
R.
,
1994
, “
Numerical Analysis of the Three-dimensional Swirling Flow in Centrifugal Compressor Volutes
,”
ASME J. Turbomach.
116
, pp.
462
468
.
4.
Hagelstein, D., Hillewaert, K., Van den Braembussche, R. A., Engeda, A., Keiper, R., and Rautenberg M., 1999, “Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute,” ASME 99-GT-79.
5.
Hagelstein, D., Van den Braembussche, R. A., Keiper, R., and Rautenberg M., 1997, “Experimental Investigation of the Circumferential Static Pressure Distortion in Centrifugal Gas Compressor Stages,” ASME Paper No. 97- GT-50.
6.
Flathers
,
M. B.
, and
Bache
,
G. E.
,
1999
, “
Aerodynamically Induced Radial Forces in a Centrifugal Gas Compressor: Part 2 - Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
121
, pp.
725
734
.
7.
Sorokes, J. M., Borokes, C., and Koch, J. M., 1998, “Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a Centrifugal Compressor discharge Volute,” ASME Paper No. 98-GT-326.
8.
Hillewaert
,
K.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Numerical Simulation of Impeller-Volute Interaction in Centrifugal Compressors
,”
ASME J. Turbomach.
121
, pp.
603
608
.
9.
Flathers, M. B., Bache, G. E., and Rautensberger, R., 1994, “An Experimental and Computational Investigation of Flow in a Radial Inlet of An Industrial Pipeline Centrifugal Compressor,” ASME Paper No. 94-GT-134.
10.
Lakshminarayana
,
B.
,
1991
, “
An Assessment of Computational Fluid Dynamics Techniques in the Analysis and Design of Turbomachinery
,”
ASME J. Fluids Eng.
113
, pp.
315
352
.
11.
Galpin, P. F., Broberg, R. B., and Hutchinson, B. R., 1995, “Three-Dimensional Navier Stokes Predictions of Steady State Rotor/Stator Interaction with Pitch Change,” CFD 95 - CFD Society of Canada, Banff, Alberta, Canada.
12.
Stanitz, J., 1952, “One Dimensional Compressible Flow in Vaneless Diffusers of Radial and Mixed Flow Compressors Including Effects of Friction, Heat Transfer and Area Change,” NACA TN 2610.
13.
Japikse, D., 1996, “Centrifugal Compressor Design and Performance,” Concepts ETI Inc.
14.
Schlichting, H., 1979, Boundary-Layer Theory, McGraw-Hill, Seventh Edition, NY.
15.
Japikse, D. and Baines, N, 1998, “Diffuser Design Technology,” Concepts ETI Inc.
16.
Senoo
,
Y.
,
Kinoshita
,
Y.
,
1977
, “
Influence of Inlet Flow Conditions and Geometries of Centifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow
,”
ASME J. Fluids Eng.
99
, pp.
98
103
.
You do not currently have access to this content.