Gas-liquid two-phase bubbly flows in right angle bends have been studied. Numerical predictions of the flow in right angle bends are made from first principles using an Eulerian-Eulerian two-fluid model. The flow geometry includes a sufficiently long inlet duct section to assure fully developed flow conditions into the bend. The strong flow stratification encountered in these flows warrant the use of Eulerian-Eulerian description of the flow, and may have implications for flow boiling in U-bends. The computational model includes the finer details associated with turbulence behavior and a robust void fraction algorithm necessary for the prediction of such a flow. The flow in the bend is strongly affected by the centrifugal forces, and results in large void fractions at the inner part of the bend. Numerical predictions of pressure drop for the flow with different bend radii and duct aspect ratios are presented, and are in general agreement with data in the literature. Measurements of pressure drop for an air-water bubbly flow in a bend with a nondimensional bend radius of 5.5 have also been performed, and these pressure drop measurements also substantiate the computations described above. In addition to the global pressure drop for the bend, the pressure variations across the cross section of the duct that give rise to the fluid migration (due to centrifugal forces), and stratification of the phases are interesting in their own right. [S0098-2202(00)01004-X]
Skip Nav Destination
Article navigation
December 2000
Technical Papers
Two-Phase Flow Pressure Drop in Right Angle Bends
Edward Graf,
Edward Graf
Ingersoll Dresser Pumps, Phillipsburg, NJ 08865-2797
Search for other works by this author on:
Sudhakar Neti
Sudhakar Neti
Lehigh University, Bethlehem, PA 18015-3085
Search for other works by this author on:
Edward Graf
Ingersoll Dresser Pumps, Phillipsburg, NJ 08865-2797
Sudhakar Neti
Lehigh University, Bethlehem, PA 18015-3085
Contributed by the Fluids Engineering Division for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division January 6, 1998; revised manuscript received June 19, 2000. Associate Technical Editor: M. Sommerfeld.
J. Fluids Eng. Dec 2000, 122(4): 761-768 (8 pages)
Published Online: June 19, 2000
Article history
Received:
January 6, 1998
Revised:
June 19, 2000
Citation
Graf, E., and Neti, S. (June 19, 2000). "Two-Phase Flow Pressure Drop in Right Angle Bends ." ASME. J. Fluids Eng. December 2000; 122(4): 761–768. https://doi.org/10.1115/1.1313246
Download citation file:
Get Email Alerts
Cited By
Effects of Tire Attributes on the Aerodynamic Performance of a Generic Car–Tire Assembly
J. Fluids Eng (January 2025)
Related Articles
Modeling and Numerical Prediction of Flow Boiling in a Thin Geometry
J. Heat Transfer (February,2004)
Computational Fluid Dynamics Modeling of the Pressure Drop of an Iso-Thermal and Turbulent Upward Bubbly Flow Through a Vertical Pipeline Using Population Balance Modeling Approach
J. Energy Resour. Technol (October,2022)
Turbulence and Phase Distribution in Bubbly Pipe Flow Under Microgravity Condition
J. Fluids Eng (December,2002)
Related Proceedings Papers
Related Chapters
Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Random Turbulence Excitation Forces Due to Two-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)