A model of the formation of cavitation nuclei is developed assuming local detachment of the liquid at locations of concave solid surface topography. The detachment is attributed to diffusion of gas molecules into the interfacial liquid, where the liquid-solid bonds are strained due to interfacial tension in the liquid. Calculations indicate that attached interfacial voids may grow into stabilized cavitation nuclei as a consequence of broad-band resonance, excited by external sources of noise or vibration in the whole range of frequencies up to the MHz regime. The gas content in the liquid and the amplitude and frequency of the sound field determine a balance between rectified diffusion of gas into the void and diffusion out of it due to the excess pressure in the void. In strong acoustic fields and in supersaturated liquids the voids may grow into bubbles that detach and form free gas bubbles. [S0098-2202(00)01503-0]

1.
Harvey
,
E. N.
,
Barnes
,
D. K.
,
McElroy
,
W. D.
,
Peace
,
D. C.
, and
Cooper
,
K. W.
,
1944
, “
Bubble Formation in Animals. I. Physical Factors
,”
J. Cell. Comp. Physiol.
,
24
, pp.
1
22
.
2.
Mo̸rch, K. A., 1992, “A Molecular Approach to Cavitation Inception,” 2e´me Journees Cavitation. Societe Hydrotechnique de France, Comite Technique—Colloque d’Hydrotechnique, Session No. 144, Paper 1, 18.3.1992.
3.
Mortensen, N. A., Ku¨hle, A., and Mo̸rch, K. A., 1998, “Interfacial Tension in Water at Solid Surfaces,” Proceedings 3rd International Symposium on Cavitation, Michel, J. M., and Kato, H., eds., Grenoble, France, Vol. 1, pp. 87–91.
4.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, Oxford, U.K. and New York.
5.
Crum, L. A., 1980, “Acoustic Cavitation Thresholds in Water,” Cavitation and Inhomogeneities in Underwater Acoustics, Lauterborn, W., ed., Springer Series in Electrophysics, Vol. 4, pp. 84–89, Springer-Verlag, Berlin.
6.
Greenspan
,
M.
, and
Tschiegg
,
C. E.
,
1967
, “
Radiation-Induced Acoustic Cavitation: Apparatus and Some Results
,”
J. Res. Natl. Bur. Stand., Sect. C
,
71C
, pp.
299
312
.
7.
Israelachvili
,
J. N.
, and
Pashley
,
R. M.
,
1983
, “
Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces
,”
Nature (London)
,
306
, pp.
249
250
.
8.
Xia
,
X.
,
Perera
,
L.
,
Essmann
,
U.
, and
Berkowitz
,
M. L.
,
1995
, “
The Structure of Water at Platinum/Water Interfaces, Molecular Dynamics Computer Simulations
,”
Surf. Sci.
,
335
, pp.
401
415
.
9.
Minnaert
,
M.
,
1933
, “
On Musical Air-Bubbles and the Sound of Running Water
,”
Philos. Mag.
,
16
, pp.
235
248
.
10.
Epstein
,
P. S.
, and
Plesset
,
M. S.
,
1950
, “
On the Stability of Gas Bubbles in Liquid-Gas Solutions
,”
J. Chem. Phys.
,
18
, pp.
1505
1509
.
11.
Safar
,
M. H.
,
1968
, “
Comment on Papers Concerning Rectified Diffusion of Cavitation Bubbles
,”
J. Acoust. Soc. Am.
,
43
, pp.
1188
1189
.
12.
Briggs
,
L. J.
,
1950
, “
Limiting Negative Pressure of Water
,”
J. Appl. Phys.
,
21
, pp.
721
722
.
13.
Keller, A. P., 1982, Schlussbericht u¨ber das Forschungsvorhaben “Beginnende Kavitation, Zugspannungen in Flu¨ssigkeiten,” 2. Teil, Versuchsanstalt fu¨r Wasserbau und Wassermengenwirtschaft, der Technischen Universita¨t, Mu¨nchen/Obernach, Germany.
14.
Keller, A. P., 1988, “Cavitation Scale Effects,” AGARD Report 827, High Speed Body Motion in Water, NATO.
You do not currently have access to this content.