This paper illustrates the effects of the dynamics of bubbles with arbitrary vapor-gas contents on the inviscid and viscous stability of two-dimensional parallel bubbly flows of low void fraction. The linear perturbation equations derived for the stability analysis include the effects of bubble compressibility, inertia, and energy dissipation due to the viscosity of the liquid and the transfer of heat and mass as a consequence of compression/expansion of the noncondensable gas and evaporation/condensation of the vapor contained in the bubbles. Numerical solution of the spatial stability problem for two-dimensional inviscid shear layers and Blasius boundary layers confirms that the presence of the dispersed phase is generally in favor of stability. Significant deviations from the classical results for compressible and incompressible single phase fluids are observed, especially when the occurrence of large compliant and/or resonant oscillations of the bubbles greatly enhances their dynamic coupling with the perturbation field. More importantly, the present analysis points out some major differences in the stability of parallel flows with noncondensable gas bubbles with respect to cavitating flows containing bubbles with a dominant content of vapor. Unconditional stability is predicted in the travelling bubble cavitation limit for low pressures and high vapor mass fraction of the bubble contents. Results are shown to illustrate these effects for some representative flow configurations and conditions. [S0098-2202(00)00603-9]

1.
Brennen, C. E., 1994, Hydrodynamics of Pumps, Oxford University Press, NY.
2.
Knapp, R. T., Daily, J. W., and Hammitt, F. G., 1970, Cavitation, McGraw-Hill, NY.
3.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, NY.
4.
d’Agostino, L., and Brennen, C. E., 1983, “On the Acoustical Dynamics of Bubble Clouds,” ASME Cavitation and Multiphase Flow Forum, Houston, TX, USA, pp. 72–75.
5.
d’Agostino
,
L.
, and
Brennen
,
C. E.
,
1988
, “
Acoustical Absorption and Scattering Cross Sections of Spherical Bubble Clouds
,”
J. Acoust. Soc. Am.
,
84
, pp.
2126
2134
.
6.
d’Agostino
,
L.
, and
Brennen
,
C. E.
,
1989
, “
Linearized Dynamics of Spherical Bubble Clouds
,”
J. Fluid Mech.
,
199
, pp.
155
176
.
7.
d’Agostino
,
L.
,
Brennen
,
C. E.
, and
Acosta
,
A. J.
,
1988
, “
Linearized Dynamics of Two-Dimensional Bubbly and Cavitating Flows over Slender Surfaces
,”
J. Fluid Mech.
,
192
, pp.
485
509
.
8.
d’Auria, F., d’Agostino, L., and Brennen, C. E., 1994, “Linearized Dynamics of Bubbly and Cavitating Flows in Cylindrical Ducts,” FED Vol. 194, 1994 ASME Fluids Engineering Summer Meeting, Incline Village, NV, June 19–23, pp. 59–66.
9.
d’Auria F., d’Agostino, L., and Brennen, C. E., 1995, “Bubble Dynamics on the Rotordynamic Forces in Cavitating Inducers,” FED Vol. 201, pp. 47–54, 1995 ASME Fluids Engineering Summer Meeting, Hilton Island, SC, USA, August 13–18.
10.
d’Agostino, L., and d’Auria, F., 1997, “Three-Dimensional Analysis of Rotordynamic Forces on Whirling and Cavitating Inducers,” 1997 ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, June 22–26.
11.
Betchov R., and Criminale, W. O., Jr., 1967, Stability of Parallel Flows, Academic, NY.
12.
Drazin, P. G., and Reid, W. H., 1981, Hydrodynamic Stability, Cambridge University Press.
13.
Marboe, R. C., Billet, M. L., and Thomson, D. E., 1986, “Some Aspects of Traveling Bubble Cavitation and Noise,” International Symposium on Cavitation and Multiphase Flow Noise, Anaheim, CA.
14.
Arakeri
,
V. H.
, and
Shanmuganathan
,
V.
,
1985
, “
On the Evidence for the Effect of Bubble Interference on Cavitation Noise
,”
J. Fluid Mech.
,
159
, pp.
131
150
.
15.
Ceccio, S. L., and Brennen, C. E., 1990, “Observations of the Dynamics and Acoustics of Attached Cavities,” ASME Cavitation and Multiphase Flow Forum, Toronto, Ontario, Canada, pp. 79–84.
16.
d’Agostino, L., d’Auria, F., and Brennen, C. E., 1995, “Stability of Parallel Bubbly and Cavitating Flows,” International Symposium on Cavitation, Deauville, France, May 12–15.
17.
d’Auria, F., d’Agostino, L., and Brennen, C. E., 1995, “Inviscid Stability of Bubbly Jets,” AIAA Paper 95-2377, 31st AIAA/ASME/SAE/ASEE Joint Prop. Conf., San Diego, CA, July 10–12.
18.
d’Agostino
,
L.
,
d’Auria
,
F.
, and
Brennen
,
C. E.
,
1997
, “
On the Inviscid Stability of Parallel Bubbly Flows
,”
J. Fluid Mech.
,
339
, pp.
261
274
.
19.
Burzagli, F., 1997, “Stabilita` di Flussi Paralleli Liquido-Aeriforme Contenenti Bolle,” Laurea thesis, Aerospace Engineering Dept., Pisa University, Pisa, Italy.
20.
d’Auria, F., d’Agostino, L., and Burzagli, F., 1997, “Linear Stability of Parallel Shear Layers Containing Vapor-Gas Bubbles,” 1997 ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, June 22–26.
21.
Burzagli, F., and d’Agostino, L., 1998, “Linear Stability of Blasius Boundary Layers Containing Gas-Vapor Bubbles,” Proc. 3rd International Symposium on Cavitation, Vol. 1, pp. 99–105, Grenoble, France, April 7–10.
22.
Davey
,
A.
,
1983
, “
An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems
,”
J. Comput. Phys.
,
51
, pp.
343
356
.
23.
Rietema
,
K.
, and
van den Akker
,
H. E. A.
,
1983
, “
On the Momentum Equations in Dispersed Two-Phase Systems
,”
Int. J. Multiphase Flow
,
9
, pp.
21
36
.
24.
Nigmatulin
,
R. I.
,
1970
, “
Methods of Mechanics of a Continuum Medium for the Description of Multiphase Mixtures
,”
J. Appl. Math. Mech.
,
34
, pp.
1033
1049
.
25.
Nigmatulin
,
R. I.
,
1971
, “
Small-Scale Effects and Surface Effects in the Hydrodynamics of Multiphase Media
,”
J. Appl. Math. Mech.
,
35
, pp.
409
420
.
26.
Nigmatulin, R. I., and Khabeev, N. S., 1976, “Dynamics of Vapor-Gas Bubbles,” translated from Izv. Akad. Nauk. SSSR, Mekh. Zhid. Gaza, No. 3, pp. 867–871.
27.
Nigmatulin
,
R. I.
, and
Khabeev
,
N. S.
,
1977
, “
Dynamics of Vapor-Gas Bubbles
,”
Fluid Dyn.
,
12
, pp.
59
67
.
28.
Nagiev
,
F. B.
, and
Khabeev
,
N. S.
,
1979
, “
Heat Transfer and Phase Transition Effects Associated with Oscillations of Vapor-Gas Bubbles
,”
Sov. Phys. Acoust.
,
25
, pp.
148
152
.
29.
Nigmatulin
,
R. I.
,
Khabeev
,
N. S.
, and
Nagiev
,
F. B.
,
1981
, “
Dynamics, Heat and Mass Transfer of Vapor-Gas Bubble in a Liquid
,”
Int. J. Heat Mass Transf.
,
24
, pp.
1033
1044
.
30.
Chapman
,
R. B.
, and
Plesset
,
M. S.
,
1971
, “
Thermal Effects in the Free Oscillation of Gas Bubbles
,”
ASME J. Basic Eng.
,
93
, pp.
373
376
.
31.
Prosperetti
,
A.
,
1984
, “
Bubble Phenomena in Sound Fields: Part One
,”
Ultrasonics
,
22
, pp.
69
77
.
32.
Prosperetti
,
A.
,
1991
, “
The Thermal Behaviour of Oscillating Gas Bubbles
,”
J. Fluid Mech.
,
222
, pp.
587
616
.
33.
Finch
,
R. D.
, and
Neppiras
,
E. A.
,
1973
, “
Vapour Bubble Dynamics
,”
J. Acoust. Soc. Am.
,
53
, pp.
1402
1410
.
34.
Wang
,
T.
,
1974
, “
Effects of Evaporation and diffusion on an Oscillating Bubble
,”
Phys. Fluids
,
17
, pp.
1121
1126
.
35.
Fanelli
,
M.
,
Prosperetti
,
A.
, and
Reali
,
M.
,
1981
, “
Radial Oscillations of Gas-Vapor Bubbles in Liquids: Part I: Mathematical Formulation
,”
Acustica
,
47
, No.
4
, pp.
253
265
.
36.
Fanelli
,
M.
,
Prosperetti
,
A.
, and
Reali
,
M.
,
1981
, “
Radial Oscillations of Gas-Vapor Bubbles in Liquids: Part II: Numerical Examples
,”
Acustica
,
49
, pp.
98
109
.
37.
Daily
,
J. W.
, and
Johnson
,
V. E.
, Jr.
,
1958
, “
Turbulence and Boundary Layer Effects on Cavitation Inception from Gas Nuclei
,”
Trans. ASME
,
78
, pp.
1695
1706
.
38.
Wang, Yi-Chun, 1998, “Effects of Nuclei Size Distribution on the Dynamics of a Spherical Cloud of Cavitation Bubbles,” ASME FED Summer Meeting, FEDSM’98, June 21–25.
39.
Stoer, J., and Burlish, R., 1980, Introduction to Numerical Analysis, Springer.
40.
Press, W., Teulkowsky, S., Vetterling, W., and Flannery, B., 1992, Numerical Recipes in FORTRAN, 2nd ed., Cambridge University Press.
41.
Stoer, J., 1974, “Introduzione all’ Analisi Numerica 1,” Zanichelli, ed. S.p.A., Bologna, Italy.
42.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
, pp.
521
544
.
43.
Drazin
,
P. G.
,
1958
, “
The Stability of a Shear Layer in an Unbounded Heterogeneous Inviscid Fluid
,”
J. Fluid Mech.
,
4
, pp.
214
224
.
44.
Blumen
,
W.
,
1970
, “
Shear Layer Instability of an Inviscid Compressible Fluid
,”
J. Fluid Mech.
,
40
, pp.
769
781
.
45.
Blumen
,
W.
,
Drazin
,
P. G.
, and
Billing
,
D. F.
,
1975
, “
Shear Layer Instability of an Inviscid Compressible Fluid. Part 2
,”
J. Fluid Mech.
,
71
, pp.
305
316
.
46.
Drazin
,
P. G.
, and
Davey
,
A.
,
1977
, “
Shear Layer Instability of an Inviscid Compressible Fluid. Part 3
,”
J. Fluid Mech.
,
82
, pp.
255
260
.
47.
O’Drury
,
L. C.
,
1980
,
J. Comput. Phys.
,
37
, p.
133
133
.
48.
Jordinson
,
R.
,
1970
, “
The Flat Plate Boundary Layer. Part 1. Numerical Integration of the Orr-Sommerfeld Equation
,”
J. Fluid Mech.
,
43
, pp.
801
811
.
49.
Ng
,
B. S.
, and
Reid
,
W. H.
,
1980
, “
On the Numerical Solution of the Orr-Sommerfeld Problem: Asymptotic Initial Conditions for Shooting Methods
,”
J. Comput. Phys.
,
38
, pp.
275
293
.
50.
Voinov, O. V., 1973, “Force Acting on a Sphere in an Inhomogeneous Flow of an Ideal Incompressible Fluid,” Plenum (Transl. from Z. Prikl. Mekh. i Tekh. Fiz., 4, pp. 182–184, July–August 1973).
51.
Blake, 1986, Mechanics of Flow-Induced Sound and Vibration, Academic, NY.
52.
Herbolzeimer
,
E.
,
1983
, “
Stability of the Flow During Sedimentation in Inclined Channels
,”
Phys. Fluids
,
26
, pp.
2043
2054
.
53.
Shaqfeh
,
E. S. G.
, and
Acrivos
,
A.
,
1986
, “
The Effect of Inertia on the Stability of the Convective Flow in Inclined Particle Settlers
,”
J. Physiol. (Paris)
,
30
, pp.
960
973
.
54.
Yang
,
Y.
,
Chung
,
J. N.
,
Troutt
,
T. R.
, and
Crowe
,
C. T.
,
1990
, “
The Influence of Particles on the Spatial Stability of Two-Phase Mixing Layers
,”
Phys. Fluids A
,
2
, pp.
1839
1845
.
You do not currently have access to this content.