The present study examines the vortex street wake behavior of a flexible, helically wound, high aspect ratio marine cable in a linear shear flow. Particular attention is paid to the lock-on phenomena associated with uniform and sheared flow past the cable when it is forced to vibrate in the first mode, normal to the flow. An analysis is given of the effects on the vortex shedding and synchronization phenomena that are generated by placing distributions of spherical bluff body shapes along the span of the cable in uniform and sheared flow. The latter geometry is representative of a number of cable system deployments and has special consequencies for strumming in a shear flow. The effectiveness of these attached spheres as strumming-suppression devices is evaluated. Synchronized vibration and/or the presence of the bluff bodies significantly affected the spanwise character of the near wake cellular vortex shedding structure. The spanwise extent of the resonant, vortex-excited oscillations was significantly extended by the presence of the spheres along the cable span. This finding was particularly significant because it meant that the undesirable effects that accompanied synchronization would be extended over a longer portion of the cable span.

This content is only available via PDF.
You do not currently have access to this content.