Graphical Abstract Figure

Composite log of the Marcellus shale well. The shaded intervals represent stimulation candidates (Int1, Int2, and Int3) for the Marcellus shale. PAS_DEN and PAS_SON represent density- and sonic/resistivity overlay methods. TECH. REC. RES. represents technically recoverable resources.

Graphical Abstract Figure

Composite log of the Marcellus shale well. The shaded intervals represent stimulation candidates (Int1, Int2, and Int3) for the Marcellus shale. PAS_DEN and PAS_SON represent density- and sonic/resistivity overlay methods. TECH. REC. RES. represents technically recoverable resources.

Close modal

Abstract

This paper presents a new five-step method to evaluate shale gas formations with intricate pore networks. The method overcomes challenges posed by traditional workflows through an improved workflow and a new unconventional petrophysical model: (a) the new model accurately defines components of shale gas formations, including effective and isolated pores occupied by free and adsorbed gas; (b) total organic carbon (TOC) is evaluated using three techniques using conventional well logs to determine which techniques are more accurate; and (c) the improved method provides integrated evaluation of geomechanical properties, resources in place, and selection of stimulation candidate. Our field case study on Marcellus shale shows that (a) density-based TOC technique is more accurate and average TOC in the study area is 2.8%; (b) density porosity model is more reliable and average porosity in the study area is 8.5%. Positive correlation between TOCs and porosities in the upper and lower Marcellus suggests that effective pores contribute more significantly to the pore network than isolated pores; (c) gas in place is 120 Bcf with 60% free gas for a drilling unit of 640 acres. Large contrasts in Young's modulus (1 million psi) and minimum in situ stress (893 psi) along the upper Marcellus-Stafford limestone boundary, and resistivity separations in the lower Marcellus member, show that the upper Marcellus is a good stimulation candidate. This method and field case study provide valuable insights to evaluate Marcellus shale reservoirs and improve economic recovery of the resources in place.

References

1.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
2.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
3.
Chang
,
O.
,
Kinzel
,
M.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2018
, “
Physics of Proppant Transport Through Hydraulic Fracture Network
,”
ASME J. Energy Resour. Technol
,
140
(
3
), p.
032912
.
4.
Brett
,
C. E.
, and
Baird
,
G. C.
,
1996
, “
Middle Devonian Sedimentary Cycles and Sequences in the Northern Appalachian Basin
,”
Geol. Soc. Am. Spec. Pap.
,
306
, pp.
213
242
.
5.
Lash
,
G. G.
, and
Engelder
,
T.
,
2011
, “
Thickness Trends and Sequence Stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian Foreland Basin Evolution
,”
AAPG Bull.
,
95
(
1
), pp.
61
103
.
6.
Enomoto
,
C. B.
,
Coleman
,
J. B.
,
Haynes
,
J. T.
, and
Whitmeyer
,
S. J.
,
2012
, “Geology of the Devonian Marcellus Shale–Valley and Ridge Province, Virginia and West Virginia Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011,” US Geological Survey, Report No. 2012-1194, 55, https://pubs.usgs.gov/of/2012/1194/pdf/ofr2012-1194.pdf
7.
Glorioso
,
J. C.
, and
Rattia
,
A.
,
2012
, “
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
,”
SPE/EAGE Unconventional Resources Conference and Exhibition Held in Vienna
,
Austria
,
Mar. 20–22
, Paper No. SPE-153004-MS.
8.
Asquith
,
G.
, and
Krygowski
,
D.
,
2004
, “
Log Interpretation, in G. Asquith and D. Krygowski, Basic Well Log Analysis
,”
AAPG Methods in Exploration
,
Tulsa, OK
, p.
229
.
9.
Wang
,
G.
, and
Carr
,
T. R.
,
2013
, “
Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin
,”
AAPG Bull.
,
97
(1
2
), pp.
2173
2205
.
10.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Campos
,
M. D.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
,
17
(
1
), pp.
219
229
.
11.
Alfred
,
D.
, and
Vernik
,
L.
,
2012
, “
A New Petrophysical Model for Organic Shales
,”
SPWLA 53rd Annual Logging Symposium
,
Cartagena, Colombia
,
June 16–20
, Paper No. 2013-v54n3-A4.
12.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
13.
Zheng
,
H.
,
Zhang
,
J.
, and
Qi
,
Y.
,
2020
, “
Geology and Geomechanics of Hydraulic Fracturing in the Marcellus Shale Gas Play and Their Potential Applications to the Fuling Shale Gas Development
,”
Energy Geosci.
,
1
(
1–2
), pp.
36
46
.
14.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
, and
Ji
,
W.
,
2021
, “
Evaluation of the Pore Structure Variation During Hydraulic Fracturing in Marine Shale Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083002
.
15.
Wang
,
J.
,
Gu
,
D.
,
Meng
,
X.
, and
Yang
,
D.
,
2021
, “
Quantitative Characterization of Shale Porosities of Different Origins by Integrating Pore Genesis and Logging Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103004
.
16.
Passey
,
Q. R.
,
Bohacs
,
K. M.
,
Esch
,
W. L.
,
Klimentidis
,
R.
, and
Sinha
,
S.
,
2010
, “
From Oil-Prone Source Rock to Gas Producing Shale Reservoirs-Geological and Petrophysical Characterization in Unconventional Shale-Gas Reservoirs
,”
CPS/SPE International Oil & Gas Conference and Exhibition
,
Beijing, China
,
June 8–10
, Paper No. SPE-131350-MS, 29.
17.
Sondergeld
,
C. H.
,
Newsham
,
K. E.
,
Comisky
,
J. T.
,
Rice
,
M. C.
, and
Rai
,
C. S.
,
2010
, “
Petrophysical Considerations in Evaluating and Producing Shale Gas Resources
,”
SPE Unconventional Gas Conference
,
Pittsburgh, PA
,
Feb. 23–25
, Paper No. SPE-131768-MS.
18.
Kim
,
T.
,
Hwang
,
S.
, and
Jang
,
S.
,
2016
, “
Petrophysical Approach for Estimating Porosity, Clay Volume, and Water Saturation in Gas-Bearing Shale: A Case Study From the Horn River Basin, Canada
,”
Austrian J. Earth Sci.
,
109
(
2
), pp.
289
298
.
19.
Milliken
,
K. L.
,
Rudnicki
,
M.
,
Awwiller
,
D. N.
, and
Zhang
,
T.
,
2013
, “
Organic Matter–Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania
,”
AAPG Bull.
,
97
(
2
), pp.
177
200
.
20.
Katahara
,
K. W.
,
1996
, “
Clay Mineral Elastic Properties
,”
SEG Annual Meeting Expanded Technical Program Abstracts With Biographies
,
Denver, CO
,
Nov. 10–15
, pp.
1691
1694
.
21.
Ji
,
S.
,
Wang
,
Q.
, and
Xia
,
B.
,
2002
,
Handbook of Seismic Properties of Minerals, Rocks and Ores
,
Polytechnique International Press
,
Montreal, Quebec
, p.
630
.
22.
Rider
,
M. H.
,
1999
,
The Geological Interpretation of Well Logs
, 2nd ed.,
Whittles Publishing Services
,
Caithness
, p.
290
.
23.
Haynes
,
W. M.
,
2014
,
CRC Handbook of Chemistry and Physics
, 95th ed.,
CRC Press
,
Boca Raton, FL
, p.
2666
.
24.
Fertl
,
W. H.
, and
Chlllger
,
G. V.
,
1988
, “
Total Organic Carbon Content Determined From Well Logs
,”
SPE Form. Eval.
,
3
(
2
), pp.
407
419
.
25.
Ward
,
A. J.
,
2010
, “
Kerogen Density in the Marcellus Shale
,”
SPE Unconventional Gas Conference
,
Pittsburgh, PA
,
Feb. 23–25
, Paper No. SPE-131767-MS.
26.
Vincké
,
O.
,
Boutéca
,
M.
, and
Longuemarre
,
P.
,
1998
, “
Investigation of the Poromechanical Behavior of Shales in Elastic Domain
,”
SPE/ISRM Rock Mechanics in Petroleum Engineering
,
Trondheim, Norway
,
July 8–10
, Paper No. SPE-47589-MS.
27.
Hart
,
D. J.
, and
Wang
,
H. F.
,
1995
, “
Laboratory Measurements of a Complete Set of Poroelastic Moduli for Berea Sandstone and Indiana Limestone
,”
J. Geophys. Res.: Solid Earth
,
100
(
B9
), pp.
17741
17751
.
28.
Starr
,
J.
,
2011
, “
Closure Stress Gradient Estimation of the Marcellus Shale From Seismic Data
,” SEG Technical Program Expanded Abstracts, Vol.
2011
, pp.
1789
1793
.
29.
Blood
,
D. R.
,
McCallum
,
S. D.
,
Jalali
,
J.
,
Douds
,
A. S.
, and
Stypula
,
M. J.
,
2020
, “
Towards a More Accurate Gas-in-Place Model: Reconciling Gas Storage With Gas Production in the Marcellus Shale, Appalachian Basin, USA
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual
,
July 20
, Paper No. URTEC-2020-2558-MS.
30.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “Thermophysical Properties of Fluid Systems,” NIST Chemistry WebBook, NIST Standard Reference Database No. 69.
31.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2013
, “
Simulation of Gas Desorption and Geomechanics Effects for Unconventional Gas Reservoirs
,”
SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference
,
Monterey, CA
,
Apr. 19
, Paper No. SPE-165377-MS.
32.
Lecompte
,
B.
,
Hursan
,
G.
, and
Hughes
,
B.
,
2010
, “
Quantifying Source Rock Maturity From Logs. How to Get More Than TOC From Delta Log R
,”
SPE Annual Technical Conference Exhibition
,
Florence, Italy
,
Sept. 20–22
, Paper No. SPE-133128-MS.
33.
Passey
,
Q. R.
,
Creaney
,
S.
,
Kulla
,
J. B.
,
Moretti
,
F. J.
, and
Stroud
,
J. D.
,
1990
, “
A Practical Model for Organic Richness From Porosity and Resistivity Logs
,”
AAPG Bull.
,
74
(
12
), pp.
1777
1794
.
34.
Schmoker
,
J. W.
,
1993
, “Use of Formation-Density Logs to Determine Organic-Carbon Content in Devonian Shales of the Western Appalachian Basin and an Additional Example Based on the Bakken Formation of the Williston Basin,”
Petroleum Geology of the Devonian and Mississippian Black Shale of Eastern North America
,
J. B.
Roen
, and
R. C.
Kepferle
, eds.,
U.S. Geological Survey Bulletin
,
U.S. Government Printing Office
, pp.
J1
J14
.
35.
Utley
,
L.
,
2005
, “
Unconventional Petrophysical Analysis in Unconventional Reservoirs—Putting the Puzzle Together in Gas Shales
,”
SPWLA Houston Chapter Spring Seminar
,
Houston, TX
,
May
.
36.
Wyllie
,
M. R. J.
,
Gregory
,
A. R.
, and
Gardner
,
L. W.
,
1958
, “
An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media
,”
Geophysics
,
23
(
3
), pp.
459
493
.
37.
Belyadi
,
H.
,
Fathi
,
E.
, and
Belyadi
,
F.
,
2019
,
Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis
,
Gulf Professional Publishing
,
Cambridge, MA
, p.
615
.
38.
Dewan
,
J. T.
,
1983
,
Essentials of Modern Open Hole Log Interpretation
,
PennWell Corporation
,
Tulsa, OK
, p.
361
.
39.
Vatsa
,
T.
, and
Wang
,
J. Y.
,
2011
, “
Fracture Height Containment in the Stimulation of Oriskany Sandstone
,”
SPE Eastern Regional Meeting
,
Columbus, OH
,
Aug. 17–19
, Paper No. SPE-149227-MS.
40.
Langmuir
,
I.
,
1918
, “
The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum
,”
J. Am. Chem. Soc.
,
40
(
9
), pp.
1403
1461
.
41.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
42.
Bruner
,
K. R.
, and
Smosna
,
R.
,
2011
, “A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin,” Report to U.S. Department of Energy, Report No. DOE/NETL-2011/1478, https://permanent.fdlp.gov/gpo116992/DOE-NETL-2011-1478.pdf
43.
Godec
,
M.
,
Koperna
,
G.
,
Petrusak
,
R.
, and
Oudinot
,
A.
,
2013
, “
Potential for Enhanced Gas Recovery and CO2 Storage in the Marcellus Shale in Eastern United States
,”
Int. J. Coal Geol.
,
118
, pp.
95
104
.
You do not currently have access to this content.